A 'little brother' of pain, itch is an unpleasant sensation that creates a specific urge to scratch. To date, various machine-learning based image classifiers (MBICs) have been proposed for quantitative analysis of itch-induced scratch behaviour of laboratory animals in an automated, non-invasive, inexpensive and real-time manner. In spite of MBICs' advantages, the overall performances (accuracy, sensitivity and specificity) of current MBIC approaches remains inconsistent, with their values varying from ~50% to ~99%, for which the reasons underlying have yet to be investigated further, both computationally and experimentally. To look into the variation of the performance of MBICs in automated detection of itch-induced scratch, this article focuses on the experimental data recording step, and reports here for the first time that MBICs' overall performance is inextricably linked to the sharpness of experimentally recorded video of laboratory animal scratch behaviour. This article furthermore demonstrates for the first time that a linearly correlated relationship exists between video sharpness and overall performance (accuracy and specificity, but not sensitivity) of MBICs, and highlight the primary role of experimental data recording in rapid, accurate and consistent quantitative assessment of laboratory animal itch.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.