The loops of the bacterial outer membrane iron transporter FepA move at different rates to adsorb and grasp the substrate ferric enterobactin before transporting it into the periplasm.
Sensitive assays of biochemical specificity, affinity, and capacity are valuable both for basic research and drug discovery. We created fluorescent sensors that monitor high-affinity binding reactions and used them to study iron acquisition by ESKAPE bacteria, which are frequently responsible for antibiotic-resistant infections. By introducing site-directed Cys residues in bacterial iron transporters and modifying them with maleimide fluorophores, we generated living cells or purified proteins that bind but do not transport target compounds. These constructs sensitively detected ligand concentrations in solution, enabling accurate, real-time spectroscopic analysis of membrane transport by other cells. We assessed the efficacy of these "fluorescent decoy" (FD) sensors by characterizing active iron transport in the ESKAPE bacteria. The FD sensors monitored uptake of both ferric siderophores and hemin by the pathogens. An FD sensor for a particular ligand was universally effective in observing the uptake of that compound by all organisms we tested. We adapted the FD sensors to microtiter format, where they allow high-throughput screens for chemicals that block iron uptake, without genetic manipulations of the virulent target organisms. Hence, screening assays with FD sensors facilitate studies of mechanistic biochemistry, as well as discovery of chemicals that inhibit prokaryotic membrane transport. With appropriate design, FD sensors are potentially applicable to any pro-or eukaryotic high-affinity ligand transport process.
Siderophore nutrition tests with strain NA1000 revealed that it utilized a variety of ferric hydroxamate siderophores, including asperchromes, ferrichromes, ferrichrome A, malonichrome, and ferric aerobactin, as well as hemin and hemoglobin. did not transport ferrioxamine B or ferric catecholates. Because it did not use ferric enterobactin, the catecholate aposiderophore was an effective agent for iron deprivation. We determined the kinetics and thermodynamics of [Fe]apoferrichrome and Fe-citrate binding and transport by NA1000. Its affinity and uptake rate for ferrichrome (equilibrium dissociation constant [ ], 1 nM; Michaelis-Menten constant [ ], 0.1 nM; , 19 pMol/10 cells/min) were similar to those of FhuA. Transport properties forFe-citrate were similar to those of FecA ( , 5.3 nM; , 29 pMol/10 cells/min). Bioinformatic analyses implicated Fur-regulated loci ,, , and as TonB-dependent transporters (TBDT) that participate in iron acquisition. We resolved TBDT with elevated expression under high- or low-iron conditions by SDS-PAGE of sodium sarcosinate cell envelope extracts, excised bands of interest, and analyzed them by mass spectrometry. These data identified five TBDT: three were overexpressed during iron deficiency (00028, 02277, and 03023), and 2 were overexpressed during iron repletion (00210 and 01196). CLUSTALW analyses revealed homology of putative TBDT 02277 to FepA and BtuB. A Δ mutant did not transport hemin or hemoglobin in nutrition tests, leading us to designate the structural gene as (for eme/hemoglobintilization). The physiological roles of the 62 putative TBDT of are mostly unknown, as are their evolutionary relationships to TBDT of other bacteria. We biochemically studied the iron uptake systems of , identified potential iron transporters, and clarified the phylogenetic relationships among its numerous TBDT. Our findings identified the first outer membrane protein involved in iron acquisition by, its heme/hemoglobin transporter (HutA).
The TonB-dependent Gram-negative bacterial outer membrane protein FepA actively transports the siderophore ferric enterobactin (FeEnt) into the periplasm. We developed a high-throughput screening (HTS) assay that observes FeEnt uptake through FepA in living Escherichia coli, by monitoring fluorescence quenching that occurs upon binding of FeEnt, and then unquenching as the bacteria deplete it from solution by transport. We optimized the labeling and spectroscopic methods to screen for inhibitors of TonB-dependent iron uptake through the outer membrane. The assay works like a molecular switch that is on in the presence of TonB activity and off in its absence. It functions in 96-well microtiter plates, in a variety of conditions, with Z factors of 0.8-1.0. TonB-dependent iron transport is energy dependent, and the inhibitory effects of the metabolic inhibitors carbonyl cyanide m-chlorophenylhydrazone, 2,4-dinitrophenol, azide, cyanide, and arsenate on FeEnt uptake were readily detected by the assay. Because iron acquisition is a determinant of bacterial pathogenesis, HTS with this method may identify inhibitors that block TonB function and constitute novel therapeutics against infectious disease caused by Gram-negative bacteria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.