Phosphate homeostasis is tightly modulated in all organisms, including bacteria, which harbor both high- and low-affinity transporters acting under conditions of fluctuating phosphate levels. It was thought that nitrogen-fixing rhizobia, named bacteroids, inhabiting root nodules of legumes are not phosphate limited. Here, we show that the high-affinity phosphate transporter PstSCAB, rather than the low-affinity phosphate transporter Pit, is essential for effective nitrogen fixation of Sinorhizobium fredii in soybean nodules. Symbiotic and growth defects of the pst mutant can be effectively restored by knocking out PhoB, the transcriptional repressor of pit. The pst homologs of representative rhizobia were actively transcribed in bacteroids without terminal differentiation in nodules of diverse legumes (soybean, pigeonpea, cowpea, common bean, and Sophora flavescens) but exhibited a basal expression level in terminally differentiated bacteroids (alfalfa, pea, and peanut). Rhizobium leguminosarum bv. viciae Rlv3841 undergoes characteristic nonterminal and terminal differentiations in nodules of S. flavescens and pea, respectively. The pst mutant of Rlv3841 showed impaired adaptation to the nodule environment of S. flavescens but was indistinguishable from the wild-type strain in pea nodules. Taken together, root nodule rhizobia can be either phosphate limited or nonlimited regarding the rhizobial differentiation fate, which is a host-dependent feature.
Phosphorus (P) limitation is a significant factor restricting crop production in agricultural systems, and enhancing the internal P-utilization efficiency (PUE) of crops plays an important role in ensuring sustainable P use in agriculture. To better understand how P is remobilized to affect crop growth, we first screened P-efficient (B73 and GEMS50) and P-inefficient (Liao5114) maize genotypes at the same shoot P content, and then analyzed P pools and performed non-targeted metabonomic analyses to explore changes in cellular P fractions and metabolites in maize genotypes with contrasting PUE. We show that lipid-P and nucleic acid-P concentrations were significantly lower in lower leaves of P-efficient genotypes, and these P pools were remobilized to a major extent in P-efficient genotypes. Broad metabolic alterations were evident in leaves of P-efficient maize genotypes, particularly affecting products of phospholipid turnover and phosphorylated compounds, and the shikimate biosynthesis pathway. Taken together, our results suggest that P-efficient genotypes have a high capacity to remobilize lipid-P and nucleic acid-P and promote the shikimate pathway towards efficient P utilization in maize.
IntroductionLower phosphorus (P) availability limits crop productivity in agroecosystems. The remobilization of P from the source to the sink organs plays an important role in enhancing the P-utilization efficiency of crops. During the grain filling stage, phosphorus flow to the developing grains, the primary sink, determines crop yield. However, the specific contributions of different organs to grain P throughout the post-silking period in maize remain unclear.MethodsIn our study, three maize inbred lines (CIMBL89, Ji846, and CML118) with contrasting P statuses were selected and grown in a field with high P (HP, 150 kg ha–1 P2O5) and low P (LP, 0 kg ha–1 P2O5) conditions.ResultsThe grain yield of CIMBL89 was 69% and 169% greater under HP supply, and 83% and 309% greater than those of Ji846 and CML118 under LP supply, respectively. The ear length, ear diameter, and kernel row number of CML118 were lower than those of CIMBL89 and Ji846 under HP conditions. Most of the P (87%) in the grains of CIMBL89 came from P uptake at the LP supply, while almost all P (95%) came from P remobilization in various organs at the HP supply after silking. In contrast, 91% of the P found in the grain of CML118 came from P remobilization under LP supply, while 76% came from P uptake under HP supply after silking.DiscussionIn conclusion, our findings suggest that CIMBL89, with greater P acquisition efficiency, contributes to grain formation and production during the post-silking period under LP conditions. Additionally, CIMBL89 can fully remobilize P and avoid the extravagant absorption of P in P-sufficient soil, which sets it apart from Ji846 and CML118.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.