Extracellular vesicles (EVs) are excellent potential vectors for the delivery of therapeutic drugs. However, issues with biological safety and disease targeting substantially limit their clinical application. EVs from red blood cells (RBC‐EVs) are potential drug delivery vehicles because of their unique biological safety. Here, we demonstrated that EVs, including RBC‐EVs, show natural liver accumulation. Mechanistically, the liver environment induces macrophages to phagocytize RBC‐EVs in a C1q‐dependent manner. RBC‐EVs loaded with antisense oligonucleotides of microRNA‐155 showed macrophage‐dependent protective effects against acute liver failure (ALF) in a mouse model. These RBC‐EVs were also effective in treatment of ALF. Furthermore, compared to routine doses of doxorubicin and sorafenib (SRF), RBC‐EVs loaded with doxorubicin or SRF showed enhanced therapeutic effects on a murine model of orthotopic liver cancer through a mechanism dependent on macrophages. Importantly, drug‐loaded RBC‐EVs showed no systemic toxicity at therapeutically effective doses, whereas routine doses of doxorubicin and SRF showed obvious toxicity. Thus, drug‐loaded RBC‐EVs hold high potential for clinical applications in the treatment of liver disease therapy.
Transcobalamin (TCN1) is a vitamin B12 (cobalamin)-binding protein that regulates cobalamin homeostasis. Recent studies and bioinformatic analyses have found that TCN1 is highly expressed in cancer tissues and is associated with tumour aggressiveness and poor prognosis. the present study aimed to detect TCN1 as a novel biomarker for prognosis and chemosensitivity of colon cancer. nextgeneration sequencing showed that TCN1 was one of several upregulated mRnAs in colon cancer, which was verified by further bioinformatics analyses. Western blotting (n = 9) and quantitative real time polymerase chain reaction (qRT-PCR, n = 30) revealed that TCN1 was highly expressed in colon cancer tissues at both the protein and mRNA level. A total of 194 cases of colon cancer were examined by immunohistochemistry and revealed that TCN1 expression level was related to advanced stages (P < 0.005). Kaplan-Meier analysis verified that patients with lower TCN1 expression usually had longer overall survival (P = 0.008). In addition, TCN1 was highly expressed in pulmonary metastatic tumour tissues (n = 37, P = 0.025) and exhibited higher levels in right-sided colon cancer than in left-sided colon cancer (P = 0.029). TCN1 expression in specimens that had received neoadjuvant chemotherapy decreased compared with that in colonoscopy biopsy tissues (n = 42, P = 0.009). Further bioinformatics analyses verified that apoptosis pathways might have a role in high TCN1 expression. All the studies revealed that TCN1 expression in colon cancer was significantly associated with malignant biological behaviour. Therefore, TCN1 could be used as a novel biomarker for colon cancer aggressiveness and prognosis and might also be a potential biomarker for predicting neoadjuvant chemosensitivity. According to the data from GLOBOCAN 2018, colorectal cancer (CRC) is one of the most common intestinal tumours and ranks as the fourth leading cause of morbidity and the second leading cause of cancer-related mortality worldwide 1. Despite major developments in surgery and therapeutics, long-term survival remains far from satisfactory 2,3 , mainly because CRC is often detected at more advanced stages. Currently, diagnosis, relapse, and metastasis monitoring of CRC largely relies on colonoscopy and imaging data, which is usually delayed. Therefore, new sensitive biomarkers are urgently required to ensure early diagnosis and to predict progression and administer timely treatments. Transcobalamin I (TCN1) is a type of vitamin B12 (cobalamin)-binding protein that transports cobalamin from the stomach to the intestines. It plays various roles in maintaining the basic function of cell proliferation and
Endolymphatic sac tumor (ELST) is a rare neoplasm which can be encountered sporadically or in Von Hippel-Lindau (VHL) disease. Here we report a sporadic case of ELST in 31-year-old man. Neither the symptoms nor a family history of VHL disease were found in the patient. CT imaging demonstrated an expansile lytic lesion of the mastoid process of the left petrous bone. MR scanning revealed a 5.2 cm × 4.7 cm × 4.2 cm mass which showed hyperintensity on T1- and T2-weighted images. Histologic sections showed a papillary, cystic or glandular architecture. The papillary and glandular structures were lined by a single layer of flattened cuboidal-to-columnar cells. The stroma of the papillary fronds was richly vascularized and chronically inflamed. The tumor showed diffusely positive reactivity with cytokeratin (Pan), cytokeratin 19, cytokeratin 5/6, cytokeratin 7, EMA, vimentin, CD56, and NSE and also showed variable reactivity with glial fibrillary acidic protein (GFAP) and VEGF. The Ki-67 immunostain showed a proliferation index of < 1%. Because the mass was large, it was difficult to extirpate surgically. After surgery, the patient underwent gamma-knife radiosurgery for residual tumor. The findings indicate that ELST is a rare neoplasm with benign histopathological appearance and clinically destructive behavior. Because of the rarity of this tumor, it can easily be confused with other tumors such as paraganglioma, middle ear adenoma, adenocarcinoma, papillary carcinoma of thyroid or choroid plexus papilloma. Owing to its locally aggressive nature, it is difficult to extirpate surgically when it is large.Virtual SlidesThe virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/7973320646763012
Background and purposeEarly or primary application of high-frequency oscillatory ventilation (HFOV) has been recently suggested not to offer benefit to patients with acute respiratory distress syndrome (ARDS). However, the rescue effects of HFOV on severe pediatric acute respiratory distress syndrome (PARDS) with hypoxemia refractory to conventional mechanical ventilation (CMV) remain unclear. This study aimed to determine whether severe PARDS children would benefit from HFOV when oxygenation deteriorated on CMV and to identify any potential risk factors related to mortality.Patients and methodsIn a retrospective and observational study, 48 children with severe PARDS between January 2009 and July 2015 were divided into two groups: 26 in HFOV group and 22 in CMV group. Data regarding demographic, underlying conditions, arterial blood gases and clinical outcomes were collected and analyzed.ResultsThe arterial partial pressure of oxygen (PaO2)/fraction of inspiration oxygen (FiO2) ratio and PaO2 improved significantly during HFOV, whereas arterial partial pressure of carbon dioxide (PaCO2) and oxygenation index decreased. There was no statistical difference in the in-hospital mortality between the groups (P=0.367). The odds ratio of survival in HFOV group was 2.74 (95% confidence interval 0.52 to 14.58, P=0.237). The pediatric intensive care unit length of stay and total ventilation duration were longer in HFOV group (P=0.048 and P=0.000, respectively). Vasoactive agents were used more frequently in HFOV group (P=0.007). The incidence of new air leak was similar between the two groups (P=0.674). The presence of multiple organ dysfunction syndrome and heavier body weight were identified as predictors of mortality in the HFOV group (P=0.006 and P=0.020, respectively).ConclusionHFOV as an efficient alternative therapy could significantly improve hypoxemia and promote CO2 removal in severe PARDS children when oxygenation progressively worsens on CMV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.