Lysobactor enzymogenes strain OH11 is an emerging biological control agent of fungal and bacterial diseases. We recently completed its genome sequence and found it contains a large number of gene clusters putatively responsible for the biosynthesis of nonribosomal peptides and polyketides, including the previously identified antifungal dihydromaltophilin (HSAF). One of the gene clusters contains two huge open reading frames, together encoding 12 modules of nonribosomal peptide synthetases (NRPS). Gene disruption of one of the NRPS led to the disappearance of a metabolite produced in the wild type and the elimination of its antibacterial activity. The metabolite and antibacterial activity were also affected by the disruption of some of the flanking genes. We subsequently isolated this metabolite and subjected it to spectroscopic analysis. The mass spectrometry and nuclear magnetic resonance data showed that its chemical structure is identical to WAP-8294A2, a cyclic lipodepsipeptide with potent antimethicillin-resistant Staphylococcus aureus (MRSA) activity and currently in phase I/II clinical trials. The WAP-8294A2 biosynthetic genes had not been described previously. So far, the Gram-positive Streptomyces have been the primary source of anti-infectives. Lysobacter are Gram-negative soil/water bacteria that are genetically amendable and have not been well exploited. The WAP-8294A2 synthetase represents one of the largest NRPS complexes, consisting of 45 functional domains. The identification of these genes sets the foundation for the study of the WAP-8294A2 biosynthetic mechanism and opens the door for producing new anti-MRSA antibiotics through biosynthetic engineering in this new source of Lysobacter.
Lysobacter species are emerging as new sources of antibiotics. The regulation of these antibiotics is not well understood. Here, we identified a small molecule metabolite (LeDSF3) that regulates the biosynthesis of the antifungal antibiotic HSAF (heat-stable antifungal factor), a polycyclic tetramate macrolactam with a structure and mode of action distinct from the existing antifungal drugs. LeDSF3 was isolated from the culture broth of L. enzymogenes, and its chemical structure was established by NMR and MS. The purified compound induced green fluorescence in a reporter strain of Xanthomonas campestris, which contained gfp gene under the control of a DSF (diffusible signaling factor)-inducible promoter. Exogenous addition of LeDSF3 in L. enzymogenes cultures significantly increased the HSAF yield, the transcription of HSAF biosynthetic genes, and the antifungal activity of the organism. The LeDSF3-regulated HSAF production is dependent on the two-component regulatory system RpfC/RpfG. Moreover, LeDSF3 up-regulated the expression of the global regulator Clp (cAMP receptor-like protein). The disruption of clp led to no HSAF production. Together, the results show that LeDSF3 is a fatty acid-derived, diffusible signaling factor positively regulating HSAF biosynthesis and that the signaling is mediated by the RfpC/RpfG-Clp pathway. These findings may facilitate the antibiotic production through applied genetics and molecular biotechnology in Lysobacter, a group of ubiquitous yet underexplored microorganisms.
Myxococcus xanthus DK1622 contains two paralogous groEL gene loci that possess both different sequences and different organizations within the genome. Deletion of either one of these two genes alone does not affect cell viability. However, deletion of both groEL genes results in cell death unless a complemented groEL1 or groEL2 gene is present. The groEL1 gene was determined to be essential for cell survival under heat shock conditions; a strain with mutant groEL2 caused cells to be more sensitive than the wild-type strain to higher temperatures. Mutants with a single deletion of either groEL1 (MXAN_4895) or groEL2 (MXAN_4467) had a growth curve similar to that of the wild-type strain DK1622 in medium containing hydrolyzed proteins as the substrate. However, when cells were cultured on medium containing either Escherichia coli cells or casein as the substrate, deletion of groEL2, but not groEL1, led to a deficiency in cell predation and macromolecular feeding. Furthermore, groEL1 was found to play an indispensable role in the development and sporulation of cells, but deletion of groEL2 had no visible effects. Our results suggest that, although alternatively required for cell viability, the products of the two groEL genes have divergent functions in the multicellular social life cycle of M. xanthus DK1622.
Quorum sensing (QS) promotes in situ extracellular enzyme (EE) activity via the exogenous signal N-acylhomoserine lactone (AHL), which facilitates marine particle degradation, but the species that engage in this regulatory mechanism remain unclear. Here, we obtained AHL-producing and AHL-degrading strains from marine particles. The strain Ruegeria mobilis Rm01 of the Roseobacter group (RBG), which was capable of both AHL producing and degrading, was chosen to represent these strains. We demonstrated that Rm01 possessed a complex QS network comprising AHL-based QS and quorum quenching (QQ) systems and autoinducer-2 (AI-2) perception system. Rm01 was able to respond to multiple exogenous QS signals through the QS network. By applying self-generated AHLs and non-self-generated AHLs and AI-2 QS signal molecules, we modulated biofilm formation and lipase production in Rm01, which reflected the coordination of bacterial metabolism with that of other species via eavesdropping on exogenous QS signals. These results suggest that R. mobilis might be one of the participators that could regulate EE activities by responding to QS signals in marine particles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.