Active phased array antenna (APAA) is a representative of complex electronic equipment, and it plays significant roles in scenarios such as battlefield situation perception, aviation guidance, and communication. It has become the core equipment in land, navigation, and aeronautical applications. With the continuous improvement of technical changes and military requirements, the working frequency band, pointing accuracy, gain, and low sidelobe level of APAA increase, and the multi-disciplinary design contradiction between antenna electrical performance and structure and temperature becomes increasingly prominent. As a result, the electrical performance of APAA in service is prone to be affected by the external complex environments. The structural-electromagnetic-thermal (SET) coupling problem has become a key problem restricting the development of APAA. This paper has summarized the structural features and environmental loads of advanced APAA on different platforms and provided design basis and principle for antenna designer. And then the SET coupling theory of APAA has been introduced, which can be applied in both the design and manufacturing stage, as well as the performance control technology in service environment of APAA. This theory helps to analyze the impact of environmental factors, such as antenna structure deformation, radome high-temperature ablation, and feed errors, on the antenna's performance. For 128 × 768 spaceborne array antenna, in the range of 25∼85°C, the gain of antenna decreases with the increase of operating temperature and decreases by 0.015 dB with each increase of 1°C. The key design parameters in the fields of antenna manufacturing accuracy, efficient heat dissipation, and lightweight design are also analysed; for 32 × 32 rectangular planar phased array antenna, the gain of antenna decreases by 2.715 dB when the random error of installation position in x, y, and z direction reaches 1/10 of the wavelength. In addition, condition monitoring, displacement field reconstruction, and electrical performance compensation of APAA have also been touched to help engineers maintain and guarantee the antenna performance throughout its life cycle. Finally, the future research direction of SET technology of APAA has been discussed, and SET technology is extended to more fields such as antenna parameter uncertainty, high-frequency circuit electronics manufacturing, and electronic equipment performance guarantee.
With the constant increase in communication requirements in modern society, the number and type of antennas on communication platforms have been increasing at an accelerating rate. This has led to a continuous increase in platform volume and weight, and the electromagnetic environment of antenna operating has increasingly worsened, seriously restricting the further development of communication systems. As a new communication system antenna type, a reconfigurable microstrip antenna can reconstruct operating frequencies, beam directions, etc., by changing the antenna structure to provide the good multifunction characteristics of a single antenna, avoiding the electromagnetic compatibility issues caused by numerous system antennas. At present, most of the research on reconfigurable antennas judges the influence of structural characteristics on electromagnetic characteristics by simulation, which has imposed restrictions on their development and application. Therefore, a reconfigurable antenna with a resonant frequency of 8.66 GHz and 15.26 GHz and a reconfigurable antenna with maximum radiation directions of 36.2° and −36.5° are designed in this paper, and the electromechanical coupling theory of the reconfigurable antennas is studied. The resonance frequency coupling model and the pattern function coupling model considering the structural deformation of a reconfigurable microstrip antenna are established. Within the applicable range of antenna structural parameters, the relative error between the resonance frequency coupling model and the pattern function coupling model is less than 5%, which meets practical engineering application requirements. Finally, the method is shown by experimentation to verify the accuracy and validity of the proposed electromechanical coupling model.
The next-generation communication base station antennas represented by phased array antennas are towards high frequency, high gain, high density, and high pointing accuracy. The influence of mechanical structure factors on communication system channel quality is obviously increasing, and the electromechanical coupling problem is becoming more prominent. To effectively guarantee the realization of 5G/6G communication in complex working environments and accelerate the commercial process of future communication systems, an electromechanical coupling channel capacity model is established in comprehensive consideration of the positional shift, attitude deflection, and temperature change of the communication base station phased array antennas. It can be used to rapidly evaluate the communication index degradation of RF devices within the heating environment. Moreover, a sensitivity model of the electric field strength and array antenna channel capacity to the random position error of each element is constructed. The influence of the random positioning error of each element on the communication indicators is analyzed and compared under different working conditions. The simulation results show that the proposed model can effectively provide a theoretical basis and guiding role for the design and manufacture of high-frequency array base station antennas.
High in reliability, multi in function, strong in tracking and detecting, active phased array antennas have been widely applied in radar system. Heat dissipation is a major technological barrier preventing the realization of next-generation high-performance phased array antennas. As a result of the advancement of miniaturization and the in-tegration of microelectronics technology, the study and development of embedded di-rect cooling or heat dissipation has significantly enhanced the heat dissipation effect. In this paper, a novel swept-back fishnet embedded microchannel topology (SBFEMCT) is designed, and various microchannel models with different fishnet runner mesh den-sity ratios and different fishnet runner layers are established to characterize the chip Tmax, runner Pmax, and Tmax and analyze the thermal effect of SBFEMCT under these two operating conditions. The Pmax is reduced to 72.37% and 57.12% of the original at mesh density ratios of 0.5, 0.25, and 0.125, respectively. The maximum temperature reduction figures are average with little change in maximum velocity and a small increase in maximum pressure drop for the number of fishing mesh runner layers of 0-4. This paper provides a study of the latest embedded thermal dissipation from the dimension of a single chip to provide a certain degree of new ideas and ref-erences for solving the thermal technology bottleneck of next-generation high-performance phased array antennas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.