Flexible organic light-emitting diodes (OLEDs) are expected to have excellent device performance and mechanical robustness in many areas, such as wearable electronics and display devices. For the traditional materials of OLED anode, ITO is undoubtedly the most mature transparent conductive electrode available. However, the brittle and rigid nature of ITO severely limit the development of flexible OLED. In this work, a solution blending film consisting of poly (3,4 ethylenedioxythiophene): poly (styrene sulfonate) (PEDOT: PSS) and poly (ethylene oxide) (PEO) was used as a hybrid hole injection layer, where PEO polymer in the composite films can greatly improve the bending resistance of device. The printed flexible OLEDs doped with PEO exhibit impressive mechanical durability, maintaining 80.4% of its maximum external quantum efficiency after 1000 bends at a radius of curvature of 10 mm, compared to 46.3% for the counterpart without PEO doping.
Due to their narrow spectrum and high photoluminescence quantum yield, organic-inorganic hybrid perovskite materials have become an important emitter for light-emitting diodes (LED). In addition to the perovskite emitters, other perovskite materials such as methyl lead ammonium chloride (MAPbCl3) with high charge mobility can potentially be used as excellent charge transport materials. In this work, phosphorescence LED devices in which MAPbCl3 was employed as hole transport layer (HTL) was designed and fabricated by inkjet printing (IJP) process. Ethanolamine was added to the poly(3,4-ethylenedioxythiophene):poly-(styrenesulfonate) hole injection layer (HIL) to control the crystallization process and to suppress the surface defects of MAPbCl3. In addition, polyethylene oxide was doped into MAPbCl3 to improve the printability and the quality of film formation. The ‘blurred interface’ concept was successively applied to enable for the first time the IJP of three layers (HIL, HTL and emitter layers) in the LEDs. The fabricated multilayer LEDs achieved the maximum external quantum efficiency of 8.9%, maximum current efficiency of 30.8 cd A−1, and maximum power efficiency of 10.7 lm W−1. A 40 × 40 mm2 OLED light emitting device was successfully fabricated by IJP technology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.