MXene, an important and increasingly popular category of postgraphene 2D nanomaterials, has been rigorously investigated since early 2011 because of advantages including flexible tunability in element composition, hydrophobicity, metallic nature, unique in-plane anisotropic structure, high charge-carrier mobility, tunable band gap, and favorable optical and mechanical properties. To fully exploit these potentials and further expand beyond the existing boundaries, novel functional nanostructures spanning monolayer, multilayer, nanoparticles, and composites have been developed by means of intercalation, delamination, functionalization, hybridization, among others. Undeniably, the cutting-edge developments and applications of clay-inspired 2D MXene platform as electrochemical electrode or photo-electrocatalyst have conferred superior performance and have made significant impact in the field of energy and advanced catalysis. This review provides an overview of the fundamental properties and synthesis routes of pure MXene, functionalized MXene and their hybrids, highlights the state-of-the-art progresses of MXene-based applications with respect to supercapacitors, batteries, electrocatalysis and photocatalysis, and presents the challenges and prospects in the burgeoning field.
The wide bandgap and large exciton binding energy of ZnO may generate new applications in bio-imaging after careful surface modifications. Formation of chemically pure ZnO colloidal nanocrystals with controlled size without unwanted by-products or agglomeration has been the major challenge to fully utilize ZnO's unique properties. In this research, colloidal ZnO nanocrystals were synthesized by a soft chemical method. Particle size and colloidal stability were controlled by capping agents. Influences of the surface modifications on particle size, size distribution and photoluminescence properties were investigated. Pure ZnO showed high intensity UV emission and very low intensity in the visible range, indicating good surface morphology of the ZnO nanoparticles with little surface defects. Transmission electron microscopy (TEM) analysis revealed that the capped crystals were close to spherical shape with single-crystal size about 6 nm. X-ray diffraction (XRD) analyses revealed single-phase ZnO nanoparticles. For bio-imaging, emission in visible wavelength range is preferred. Both TiO 2 and SiO 2 were effective in shifting the emission peak to the visible range with high intensity. Optimum capping thickness is 0.5 nm. ZnO-TiO 2 quantum dots (QDs) showed good bio-imaging capability on plant cells. Quantum yields of the pure ZnO and TiO 2 capped ZnO were measured and compared to commercial fluorescence materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.