The design of white‐light phosphors is attractive in solid‐state lighting (SSL) and related fields. A new strategy in obtaining white light emission (WLE) from dual‐way photon energy conversion in a series of dye@MOF (LIFM‐WZ‐6) systems is presented. Besides the traditional UV‐excited one‐photon absorption (OPA) pathway, white‐light modulation can also be gained from the combination of NIR‐excited green and red emissions of MOF backbone and encapsulated dyes via two‐photon absorption (TPA) pathway. As a result, down‐conversion OPA white light was obtained for RhB+@LIFM‐WZ‐6 (0.1 wt %), BR‐2+@LIFM‐WZ‐6 (2 wt %), and APFG+@LIFM‐WZ‐6 (0.1 wt %) samples under 365 nm excitation. RhB+@LIFM‐WZ‐6 (0.05 wt %), BR‐2+@LIFM‐WZ‐6 (1 wt %) and APFG+@LIFM‐WZ‐6 (0.05 wt %) exhibit up‐conversion TPA white light under the excitation of 800, 790, and 730 nm, respectively. This new WLE generation strategy combines different photon energy conversion mechanisms together.
Near-UV single-phase white-light phosphor (Eu0.045Tb0.955CPOMBA/La0.6Eu0.1Tb0.3CPOMBA) based on metal-organic framework was prepared by in situ doping isostructural lanthanide MOF with Eu(3+) and Tb(3+), and it is found that the energy can effectively transfer from organic ligand to lanthanides, which can overcome weak absorption under direct excitation of lanthanide ions due to the forbidden f-f transitions. The photoluminescence and thermostability of the new MOF phosphor are investigated, and effective white-light emission is achieved under 365 and 380 nm excitations. By employing Eu0.045Tb0.955CPOMBA as phosphor, we fabricated a near-ultraviolet white-light-emitting diode (n-UV WLED) (365 nm) with low CCT (5733 K), high CRI (Ra = 73.4), and CIE chromaticity coordinate (0.3264, 0.3427). This approach may open new perspectives for developing single-phase UV phosphors.
Self-assembly of zinc salt with rationally designed chiral ligand, (1R,2R)-2-(pyridine-4-ylcarbamoyl) cyclohexanecarboxylic acid (RR-PCCHC) generated 2D homochiral metal-organic framework [Zn(RR-PCCHC)] (HMOF-1) that is composed of DNA-like right-handed double-helix structure. HMOF-1 shows high solvent and thermal stability and is also stable in neutral, weak acidic and weak basic aqueous solution. Emulsified HMOF-1 shows strong inherent circular dichroism (CD) signal in aqueous solution, which can show regular intensity change by induction of amino acids. On the basis of the measuring of CD signal intensity, a chemosensor for unmodified amino acids is fabricated, which differ from reported those in which CD signal is amplified by a complicated chemical reaction of originally CD-silent molecule with probed amino acids. This chemosensor can be used for rapid, convenient and sensitive detection of micro amount of amino acids. Most remarkably, 3 × 10 mol of l-aspartic acid and 4 × 10 mol of d-aspartic acid in aqueous solution can completely quench CD signal of emulsified HMOF-1 in HO. It is found that the difference of recognition ability between d- and l-proline is the largest in all probed amino acids. The LOD (limit of detection) of the proposed sensor for the determination of aspartic acid is 13.31 ppm. The recognition efficiency η = [Formula: see text] × 100% for l-aspartic acid is as high as 92.1%. The interacting mechanism of DNA-like HMOF-1 with probed amino acids is similar to that of groove binding of targeting drug with DNA.
Self-assembling metal–organic nanotubes (HMOF-2) acts as an excellent fluorescence sensor for fast, convenient, sensitive and enantioselective recognition of d/l-tartaric acid and d- or l-lactic acid with adverse properties in the food industry.
Two-dimensional (2D) metal−organic frameworks (MOFs) have attracted growing interest due to excellent performance in gas separation, energy conversion and storage, catalysis, and sensing, but their homochirality and exfoliation as well as related enantioselective catalysis and sensing remain a stage of pending exploration owing to the scarcity of homochiral MOFs and intrinsic aggregation of nanosheets. Herein, a homochiral 2D MOF (HMOF-3) with polymeric chirality, good thermostability, and solvent stability is designed and constructed by a homochiral organic ligand 5,5′-((1R,2R)-cyclohexane dicarbonyl bis-(azanediyl)) diisophthalic acid (R,R-CHCAIP), a ditopic coligand 4,4′-bipyridine, and Zn salts. Remarkably, HMOF-3 can be exfoliated via solvent-assisted sonication to achieve 2D HMOF-3 nanosheets (HMOF-3-NS), which exhibit a sensitive turn-on effect with the fluorescence enhancement up to 63.5 times in the presence of R/S-mandelic acid, D/L-tartaric acid, D/L-lactic acid, D/L-alanine, and D/L-tryptophan. More importantly, the high surface area, polymeric chirality environment, and highly accessible functional sites on the surface of HMOF-3 nanosheets enable close contact with probed enantiomers, leading to highly enantioselective and sensitive sensing. The turn-on mechanism of host−guestassisted electronic transfer is confirmed by DFT calculation and the relative experiment. This work highlights the promise of homochiral 2D MOF nanosheets for enantioselective sensing applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.