Standard-of-care infliximab dosing regimens were developed prior to the routine use of therapeutic drug monitoring and identification of target concentrations. Not surprisingly, subtherapeutic infliximab concentrations in pediatric Crohn's disease (CD) are common. The primary aim was to conduct a real-world pharmacokinetic (PK) evaluation to discover blood biomarkers of rapid clearance, identify exposure targets, and a secondary aim to translate PK modeling to the clinic. In a multicenter observational study, 671 peak and trough infliximab concentrations from 78 patients with CD were analyzed with a drug-tolerant assay (Esoterix; LabCorp, Calabasas, CA). Individual area under the curve (AUC) estimates were generated as a measure of drug exposure over time. Population PK modeling (nonlinear mixed-effect modeling) identified serum albumin, antibody to infliximab, erythrocyte sedimentation rate (ESR), and neutrophil CD64 as biomarkers for drug clearance. Week 14 and week 52 biochemical remitters (fecal calprotectin < 250 µg/g) had higher infliximab exposure (AUC) throughout induction. The optimal infliximab AUC target during induction for week 14 biochemical remission was 79,348 µg*h/mL (area under the receiver operating characteristic curve (AUROC) 0.77, [0.63-0.90], 85.7% sensitive, and 64.3% specific) with those exceeding the AUC target more likely to achieve a surgery-free week 52 biochemical remission (OR 4.3,). Pretreatment predictors for subtherapeutic week 14 AUC included neutrophil CD64 > 6 (OR 4.5,), ESR > 30 mm/h (OR 3.8,), age < 10 years old (OR 4.2,), and weight < 30 kg (OR 6.6,). We created a decisionsupport PK dashboard with an iterative process and embedded the modeling program within the electronic health record. Model-informed precision dosing guided by real-world PKs is now available at the bedside in real-time.
Background
Many pediatric patients with inflammatory bowel disease (IBD) lose response to infliximab (IFX) within the first year, and achieving a minimal target IFX trough concentration is associated with higher remission rates and longer durability. Population pharmacokinetic (PK) modeling can predict trough concentrations for individualized dosing. The object of this study was to refine a population PK model that accurately predicts individual IFX exposure during maintenance therapy using longitudinal real-practice data.
Methods
We exported data from the electronic health records of pediatric patients with IBD treated with originator IFX at a single center between January 2011 and March 2017. Subjects were divided into discovery and validation cohorts. A population PK model was built and then validated.
Results
We identified 228 pediatric patients with IBD who received IFX and had at least 1 drug concentration measured, including 135 and 93 patients in the discovery and validation cohorts, respectively. Weight, albumin, antibodies to IFX (ATI) detected by a drug-tolerant assay, and erythrocyte sedimentation rate (ESR) were identified as covariates significantly associated with IFX clearance and incorporated into the model. The model exhibited high accuracy for predicting target IFX trough concentrations with an area under the receiver operating characteristic curve (AUROC) of 0.86 (95% confidence interval [CI], 0.81–0.91) for population-based predictions without prior drug-level input. Accuracy increased further for individual-based predictions when prior drug levels were known, with an AUROC of 0.93 (95% CI, 0.90–0.97).
Conclusions
A population PK model utilizing weight, albumin, ordinal drug-tolerant ATI, and ESR accurately predicts IFX trough concentrations during maintenance therapy in real-practice pediatric patients with IBD. This model, which incorporates dynamic clinical information, could be used for individualized dosing decisions to increase response durability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.