Various acute and chronic inflammatory stimuli increase the number and activity of pulmonary mucus-producing goblet cells, and goblet cell hyperplasia and excess mucus production are central to the pathogenesis of chronic pulmonary diseases. However, little is known about the transcriptional programs that regulate goblet cell differentiation. Here, we show that SAM-pointed domain-containing Ets-like factor (SPDEF) controls a transcriptional program critical for pulmonary goblet cell differentiation in mice. Initial cell-lineage-tracing analysis identified nonciliated secretory epithelial cells, known as Clara cells, as the progenitors of goblet cells induced by pulmonary allergen exposure in vivo. Furthermore, in vivo expression of SPDEF in Clara cells caused rapid and reversible goblet cell differentiation in the absence of cell proliferation. This was associated with enhanced expression of genes regulating goblet cell differentiation and protein glycosylation, including forkhead box A3 (Foxa3), anterior gradient 2 (Agr2), and glucosaminyl (N-acetyl) transferase 3, mucin type (Gcnt3). Consistent with these findings, levels of SPDEF and FOXA3 were increased in mouse goblet cells after sensitization with pulmonary allergen, and the proteins were colocalized in goblet cells lining the airways of patients with chronic lung diseases. Deletion of the mouse Spdef gene resulted in the absence of goblet cells in tracheal/laryngeal submucosal glands and in the conducting airway epithelium after pulmonary allergen exposure in vivo. These data show that SPDEF plays a critical role in regulating a transcriptional network mediating the goblet cell differentiation and mucus hyperproduction associated with chronic pulmonary disorders.
A major challenge in developmental biology is to understand the genetic and cellular processes/programs driving organ formation and differentiation of the diverse cell types that comprise the embryo. While recent studies using single cell transcriptome analysis illustrate the power to measure and understand cellular heterogeneity in complex biological systems, processing large amounts of RNA-seq data from heterogeneous cell populations creates the need for readily accessible tools for the analysis of single-cell RNA-seq (scRNA-seq) profiles. The present study presents a generally applicable analytic pipeline (SINCERA: a computational pipeline for SINgle CEll RNA-seq profiling Analysis) for processing scRNA-seq data from a whole organ or sorted cells. The pipeline supports the analysis for: 1) the distinction and identification of major cell types; 2) the identification of cell type specific gene signatures; and 3) the determination of driving forces of given cell types. We applied this pipeline to the RNA-seq analysis of single cells isolated from embryonic mouse lung at E16.5. Through the pipeline analysis, we distinguished major cell types of fetal mouse lung, including epithelial, endothelial, smooth muscle, pericyte, and fibroblast-like cell types, and identified cell type specific gene signatures, bioprocesses, and key regulators. SINCERA is implemented in R, licensed under the GNU General Public License v3, and freely available from CCHMC PBGE website, https://research.cchmc.org/pbge/sincera.html.
In cystic fibrosis, dysregulated neutrophilic inflammation and chronic infection lead to progressive destruction of the airways. The underlying mechanisms have remained unclear. Lipoxins are anti-inflammatory lipid mediators that modulate neutrophilic inflammation. We report here that lipoxin concentrations in airway fluid were significantly suppressed in patients with cystic fibrosis compared to patients with other inflammatory lung conditions. We also show that administration of a metabolically stable lipoxin analog in a mouse model of the chronic airway inflammation and infection associated with cystic fibrosis suppressed neutrophilic inflammation, decreased pulmonary bacterial burden and attenuated disease severity. These findings suggest that there is a pathophysiologically important defect in lipoxin-mediated anti-inflammatory activity in the cystic fibrosis lung and that lipoxins have therapeutic potential in this lethal autosomal disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.