Histone methylation is regarded as an important type of histone modification defining the epigenetic program during the lineage differentiation of stem cells. A better understanding of this epigenetic mechanism that governs osteogenic differentiation of human adipose-derived stromal cells (hASCs) can improve bone tissue engineering and provide new insights into the modulation of hASCbased cell therapy. Retinoblastoma binding protein 2 (RBP2) is a histone demethylase that specifically catalyzes demethylation of dimethyl or trimethyl histone H3 lysine 4 (H3K4me2 or H3K4me3), which is normally associated with transcriptionally active genes. In this study, the roles of RBP2 in osteogenic differentiation of hASCs were investigated. We found that RBP2 knockdown by lentiviruses expressing small interfering RNA promoted osteogenic differentiation of hASCs in vitro and in vivo. In addition, we demonstrated that knockdown of RBP2 resulted in marked increases of mRNA expression of osteogenesis-associated genes such as alkaline phosphatase (ALP), osteocalcin (OC), and osterix (OSX). RBP2 was shown to occupy the promoters of OSX and OC to maintain the level of the H3K4me3 mark by chromatin immunoprecipitation assays. Furthermore, coimmunoprecipitation and luciferase reporter experiments suggested that RBP2 was physically and functionally associated with RUNX2, an essential transcription factor that governed osteoblastic differentiation.Significantly, RUNX2 knockdown impaired the repressive activity of RBP2 in osteogenic differentiation of hASCs. Altogether, our study is the first to demonstrate the functional and biological roles of H3K4 demethylase RBP2 in osteogenic differentiation of hASCs and to link RBP2 to the transcriptional regulation of RUNX2.
This study is the first to examine the impact of VWD on HR-QoL across disease severity while incorporating socioeconomic status and rurality. Significant reductions in HR-QoL among VWD patients, especially the relationship between iron status and mental HR-QoL, strengthen the rationale for prospective studies to evaluate the efficacy of iron replacement in this setting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.