Kidney aging is associated with an increasing proportion of globally scarred glomeruli, decreasing renal function, and exponentially increasing ESRD prevalence. In model systems, podocyte depletion causes glomerulosclerosis, suggesting age-associated glomerulosclerosis could be caused by a similar mechanism. We measured podocyte number, size, density, and glomerular volume in 89 normal kidney samples from living and deceased kidney donors and normal poles of nephrectomies. Podocyte nuclear density decreased with age due to a combination of decreased podocyte number per glomerulus and increased glomerular volume. Compensatory podocyte cell hypertrophy prevented a change in the proportion of tuft volume occupied by podocytes. Young kidneys had high podocyte reserve (podocyte density .300 per 10 6 mm 3 ), but by 70-80 years of age, average podocyte nuclear density decreased to, ,100 per 10 6 mm 3 , with corresponding podocyte hypertrophy. In older age podocyte detachment rate (urine podocin mRNA-to-creatinine ratio) was higher than at younger ages and podocytes were stressed (increased urine podocin-to-nephrin mRNA ratio). Moreover, in older kidneys, proteinaceous material accumulated in the Bowman space of glomeruli with low podocyte density. In a subset of these glomeruli, mass podocyte detachment events occurred in association with podocytes becoming binucleate (mitotic podocyte catastrophe) and subsequent wrinkling of glomerular capillaries, tuft collapse, and periglomerular fibrosis. In kidneys of young patients with underlying glomerular diseases similar pathologic events were identified in association with focal global glomerulosclerosis. Podocyte density reduction with age may therefore directly lead to focal global glomerulosclerosis, and all progressive glomerular diseases can be considered superimposed accelerators of this underlying process.
The reduction in podocyte density to levels below a threshold value drives glomerulosclerosis and progression to ESRD. However, technical demands prohibit high-throughput application of conventional morphometry for estimating podocyte density. We evaluated a method for estimating podocyte density using single paraffin-embedded formalin-fixed sections. Podocyte nuclei were imaged using indirect immunofluorescence detection of antibodies against Wilms' tumor-1 or transducin-like enhancer of split 4. To account for the large size of podocyte nuclei in relation to section thickness, we derived a correction factor given by the equation CF=1/(D/T+1), where T is the tissue section thickness and D is the mean caliper diameter of podocyte nuclei. Normal values for D were directly measured in thick tissue sections and in 3-to 5-mm sections using calibrated imaging software. D values were larger for human podocyte nuclei than for rat or mouse nuclei (P,0.01). In addition, D did not vary significantly between human kidney biopsies at the time of transplantation, 3-6 months after transplantation, or with podocyte depletion associated with transplant glomerulopathy. In rat models, D values also did not vary with podocyte depletion, but increased approximately 10% with old age and in postnephrectomy kidney hypertrophy. A spreadsheet with embedded formulas was created to facilitate individualized podocyte density estimation upon input of measured values. The correction factor method was validated by comparison with other methods, and provided data comparable with prior data for normal human kidney transplant donors. This method for estimating podocyte density is applicable to high-throughput laboratory and clinical use. Pagtalunan et al. used the term podocyte density to describe the key relationship between podocyte number and glomerular tuft volume. 1 Model systems have proven the causative relationship between podocyte depletion (resulting from reduced podocyte number or dysfunction and/or glomerular enlargement) and glomerulosclerosis and progression to ESRD. 2-9 Groundbreaking kidney morphometric biopsy reports from type 1 and 2 diabetes, IgA nephropathy, and hypertensive kidney biopsies in humans support the concept that reduced podocyte number and density is associated with development of glomerulosclerosis and progression, 1,10-15 and strongly imply that podocyte density estimation could help guide clinical decision making.The importance of avoiding simplistic podocyte counting strategies and using appropriate stereologic considerations for estimating podocyte number and density have recently been re-emphasized. [16][17][18][19][20] Optimal research methods for estimating podocyte density, such as the disector/fractionator approach, are too technically demanding for high-throughput
Model systems demonstrate that progression to ESRD is driven by progressive podocyte depletion (the podocyte depletion hypothesis) and can be noninvasively monitored through measurement of urine pellet podocyte mRNAs. To test these concepts in humans, we analyzed urine pellet mRNAs from 358 adult and pediatric kidney clinic patients and 291 controls (n=1143 samples). Compared with controls, urine podocyte mRNAs increased 79-fold (P,0.001) in patients with biopsy-proven glomerular disease and a 50% decrease in kidney function or progression to ESRD. An independent cohort of patients with Alport syndrome had a 23-fold increase in urinary podocyte mRNAs (P,0.001 compared with controls). Urinary podocyte mRNAs increased during active disease but returned to baseline on disease remission. Furthermore, urine podocyte mRNAs increased in all categories of glomerular disease evaluated, but levels ranged from high to normal, consistent with individual patient variability in the risk for progression. In contrast, urine podocyte mRNAs did not increase in polycystic kidney disease. The association between proteinuria and podocyturia varied markedly by glomerular disease type: a high correlation in minimalchange disease and a low correlation in membranous nephropathy. These data support the podocyte depletion hypothesis as the mechanism driving progression in all human glomerular diseases, suggest that urine pellet podocyte mRNAs could be useful for monitoring risk for progression and response to treatment, and provide novel insights into glomerular disease pathophysiology.
The attrition rate of functioning allografts beyond the first year has not improved despite improved immunosuppression, suggesting that nonimmune mechanisms could be involved. Notably, glomerulopathies may account for about 40% of failed kidney allografts beyond the first year of engraftment, and glomerulosclerosis and progression to ESRD are caused by podocyte depletion. Model systems demonstrate that nephrectomy can precipitate hypertrophic podocyte stress that triggers progressive podocyte depletion leading to ESRD, and that this process is accompanied by accelerated podocyte detachment that can be measured in urine. Here, we show that kidney transplantation "reverse nephrectomy" is also associated with podocyte hypertrophy and increased podocyte detachment. Patients with stable normal allograft function and no proteinuria had levels of podocyte detachment similar to levels in two-kidney controls as measured by urine podocyte assay. By contrast, patients who developed transplant glomerulopathy had 10-to 20-fold increased levels of podocyte detachment. Morphometric studies showed that a subset of these patients developed reduced glomerular podocyte density within 2 years of transplantation due to reduced podocyte number per glomerulus. A second subset developed glomerulopathy by an average of 10 years after transplantation due to reduced glomerular podocyte number and glomerular tuft enlargement. Reduced podocyte density was associated with reduced eGFR, glomerulosclerosis, and proteinuria. These data are compatible with the hypothesis that podocyte depletion contributes to allograft failure and reduced allograft half-life. Mechanisms may include immune-driven processes affecting the podocyte or other cells and/or hypertrophy-induced podocyte stress causing accelerated podocyte detachment, which would be amenable to nonimmune therapeutic targeting. Podocytes are complex neuron-like postmitotic cells adherent to the underlying glomerular basement membrane via foot processes that must contiguously cover the filtration surface area to maintain the normal filtration barrier. Podocytes cannot divide in situ and have limited capacity for replacement. 1 This means that when podocytes are lost, or the glomerular surface area increases due to glomerular growth, the major adaptive response is by hypertrophy. At the same time, the podocyte's structural complexity means that its capacity to hypertrophy is limited. Inability to maintain contiguous coverage of the filtration surface by foot processes results in protein leak into the filtrate. If podocyte detachment exceeds hypertrophic capacity, other glomerular cells adapt by proliferating and laying down matrix resulting in glomerulosclerosis. [2][3][4][5][6]
Background The coronavirus disease 2019 (COVID-19) pandemic has led to global research to predict those who are at greatest risk of developing severe disease and mortality. The aim of this meta-analysis was to determine the associations between obesity and the severity of and mortality due to COVID-19. Methods We searched the PubMed, EMBASE, Cochrane Library and Web of Science databases for studies evaluating the associations of obesity with COVID-19. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated using random- or fixed-effects models. Meta-regression analyses were conducted to estimate regression coefficients. Results Forty-six studies involving 625,153 patients were included. Compared with nonobese patients, obese patients had a significantly increased risk of infection. (OR 2.73, 95% CI 1.53–4.87; I2 = 96.8%), hospitalization (OR 1.72, 95% CI 1.55–1.92; I2 = 47.4%), clinically severe disease (OR 3.81, 95% CI 1.97–7.35; I2 = 57.4%), mechanical ventilation (OR 1.66, 95% CI 1.42–1.94; I2 = 41.3%), intensive care unit (ICU) admission (OR 2.25, 95% CI 1.55–3.27; I2 = 71.5%), and mortality (OR 1.61, 95% CI 1.29–2.01; I2 = 83.1%). Conclusion Patients with obesity may have a greater risk of infection, hospitalization, clinically severe disease, mechanical ventilation, ICU admission, and mortality due to COVID-19. Therefore, it is important to increase awareness of these associations with obesity in COVID-19 patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.