The aim of this study is to investigate the effect of nitrogen (N) in the regulation of grain yield, growth, and physiology and biochemistry of fragrant rice under lead (Pb) stress. Three fragrant rice cultivars (Daohuaxiang, Basmati, and Yungengyou14) were grown under two N application levels (CK, 0 kg N ha −1 , and HN, 200 kg N ha −1) under Pb-contaminated soil. The grain yield, growth, antioxidant attributes, and N metabolism of fragrant rice cultivars were investigated. Results showed that compared with CK, HN treatment increased grain yield in Daohuaxiang, Basmati, and Yungengyou14 by 24.09%, 26.74%, and 23.29%, respectively. Improvement in the effective panicle, grain number per panicle, and 1000-grain weight and agronomic traits under HN treatment was detected. HN treatment decreased the seed setting rate in the three fragrant rice cultivars. In addition, the peroxidase (POD), catalase (CAT), and glutamate synthetase (GOGAT) activity in HN treatment were increased for the three fragrant rice cultivars at both heading stage and maturity as compared to CK. The correlation between the grain yield and the other investigated parameters has also been accessed. Yungengyou14 produced the highest partial factor productivity of N and agronomic use efficiency of N. Those results suggested that N could improve the grain yield resulted from affecting the growth and physiological response of fragrant rice grown under Pb-contaminated soil.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.