In drilling and completion projects, sludge is formed as a byproduct when barite and oil are mixed, and later sticks to the casing. This phenomenon has caused a delay in drilling progress, and increased exploration and development costs. Since nano-emulsions have low interfacial surface tension, wetting, and reversal capabilities, this study used nano-emulsions with a particle size of about 14 nm to prepare a cleaning fluid system. This system enhances stability through the network structure in the fiber-reinforced system, and prepares a set of nano-cleaning fluids with adjustable density for ultra-deep wells. The effective viscosity of the nano-cleaning fluid reaches 11 mPa·s, and the system is stable for up to 8 h. In addition, this research independently developed an indoor evaluation instrument. Based on on-site parameters, the performance of the nano-cleaning fluid was evaluated from multiple angles by heating to 150 °C and pressurizing to 3.0 Mpa to simulate downhole temperature and pressure. The evaluation results show that the viscosity and shear value of the nano-cleaning fluid system is greatly affected by the fiber content, and the cleaning efficiency is greatly affected by the concentration of the nano-emulsion. Curve fitting shows that the average processing efficiency could reach 60–85% within 25 min and the cleaning efficiency has a linear relationship with time. The cleaning efficiency has a linear relationship with time, where R2 = 0.98335. The nano-cleaning fluid enables the deconstruction and carrying of the sludge attached to the well wall, which accomplishes the purpose of downhole cleaning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.