We introduce differential-mode hot electron injection for adapting and storing analog nonvolatile signed state variables. This approach is compatible with modern digital CMOS technologies and is readily extended to novel circuit applications. We highlight advantages of the technique by applying it to the design of an adaptive floating gate comparator (AFGC). This is the first use of this technique for adaptation in a nonlinear circuit. The AFGC computes appropriate voltages for locally adapting the input floating gate nodes to cancel offsets. The technique is amenable to both local and nonlocal adaptation which allows greater design flexibility.The AFGC has been fabricated in a commercially available 0.35 µm CMOS process. We experimentally demonstrate more than two orders of magnitude reduction in offset voltage: the mean offset is reduced by 416× relative to chips direct from the foundry and by 202× relative to UV-irradiated chips. We consider both static and dynamic adaptation and demonstrate that the the accuracy of dynamic offset cancellation is approximately two orders of magnitude better than static adaptation. In the presence of observed 8% injection mismatch, the AFGC robustly converges to within 728 µV of the desired input offset (mean offset −109 µV, standard deviation 379 µV). Adaptation occurs within milliseconds, with charge retention for more than one month, and variation of offset error with temperature of −15 µV/ • C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.