Swirling flows in conical pipe can be found in a number of industrial processes, such as hydrocyclone, separator and rotating machinery. It has been found that wall oscillations can reduce the drag in water channel and pipe flows, but there is no study of a swirling flow combined with a vibrating wall in conical pipes, though there are many applications of such combination in engineering processes. A two-dimensional particle image velocimetry (PIV) is used to measure the swirling flow field in a water conical pipe subjected to a periodic vibrating wall for a Reynolds number 3800. The flow velocity statistics are studied under different vibration frequencies corresponding to Strouhal numbers from 60 to 242. The instantaneous axial and vertical velocity in one vibrating period, the mean velocities, and Reynolds stresses were obtained. The results show the existence of an intermediary recirculation cell in the middle of the pipe. They also show that the vibration improves the symmetry for the swirling flow while decreasing dramatically the velocity fluctuation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.