Our efforts to model the oxygen activation chemistry of nonheme iron enzymes have yielded transient intermediates with novel properties. These properties can be dramatically affected by the introduction of a 6-methyl substituent on the pendant pyridines of the tetradentate ligand TPA (TPA = tris(2-pyridylmethyl)amine). A series of Fe(TPA) complexes has thus been synthesized and characterized to provide the structural basis for these dramatic effects. The following complexes have been obtained: [Fe(L)(CH3CN)2](ClO4)2 (1, L = TPA; 2, L = 6-MeTPA; 3, L = 6-Me2TPA; 4, L = 6-Me3TPA) and [Fe(L)(acac)](ClO4)2 (5, L = TPA; 6, L = 5-Me3TPA; 7, L = 6-MeTPA). As indicated by 1H NMR and/or EPR, 1, 5, and 6 with no 6-methyl substituent are low spin, while complexes 2, 3, 4, and 7 with at least one 6-methyl substituent are all high spin, with higher redox potentials than their low-spin counterparts. The ligands with 6-methyl substituents thus favor a metal center with a larger ionic radius, i.e., FeII over FeIII and high spin over low spin. Careful scrutiny of the crystal structures of 1, 4, 6, and 7 reveals that one hydrogen of the 6-methyl group is only 2.7 Å away from the metal center in the high-spin complexes. Its presence thus prevents the pyridine nitrogen from forming an Fe−N bond shorter than 2.1 Å as required for an iron center to adopt a low-spin configuration. This steric effect of the 6-methyl substituent serves as a simple but very useful ligand design tool to tune the electronic properties of the metastable alkylperoxoiron(III) species derived from the reactions of 1−4 with tert-butyl hydroperoxide. These intermediates serve as models for low-spin and high-spin peroxoiron(III) species in the reaction cycles of the antitumor drug bleomycin and lipoxygenase, respectively. Similar principles apply in the design of nonheme diiron(II) complexes that reversibly bind dioxygen and of high-valent bis(μ-oxo)diiron complexes that model the high-valent intermediates in the redox cycles of nonheme diiron enzymes such as methane monooxygenase and ribonucleotide reductase.
In an effort to gain more insight into the factors controlling the formation of low-spin non-heme Fe(III)-peroxo intermediates in oxidation catalysis, such as activated bleomycin, we have synthesized a series of iron complexes based on the pentadentate ligand N4Py (N4Py = N,N-bis(2-pyridylmethyl)-N-(bis-2-pyridylmethyl)amine). The following complexes have been prepared: [(N4Py)Fe(II)(CH(3)CN)](ClO(4))(2) (1), [(N4Py)Fe(II)Cl](ClO(4)) (2), [(N4Py)Fe(III)OMe](ClO(4))(2) (3), and [(N4Py)(2)Fe(2)O](ClO(4))(4) (4). Complexes 1 and 2 have low- and high-spin Fe(II) centers, respectively, whereas 3 is an Fe(III) complex that undergoes a temperature-dependent spin transition. The iron centers in the oxo-bridged dimer 4 are antiferromagnetically coupled (J = -104 cm(-)(1)). Comparison of the crystal structures of 1, 3, and 4 shows that the ligand is well suited to accommodate both Fe(II) and Fe(III) in either spin state. For the high-spin Fe(III) complexes 3 and 4 the iron atoms are positioned somewhat outside of the cavity formed by the ligand, while in the case of the low-spin Fe(II) complex 1 the iron atom is retained in the middle of the cavity with approximately equal bond lengths to all nitrogen atoms from the ligand. On the basis of UV/vis and EPR observations, it is shown that 1, 3, and 4 all react with H(2)O(2) to generate the purple low-spin [(N4Py)Fe(III)OOH](2+) intermediate (6). In the case of 1, titration experiments with H(2)O(2) monitored by UV/vis and (1)H NMR reveal the formation of [(N4Py)Fe(III)OH](2+) (5) and the oxo-bridged diiron(III) dimer (4) prior to the generation of the Fe(III)-OOH species (6). Raman spectra of 6 show distinctive Raman features, particularly a nu(O-O) at 790 cm(-)(1) that is the lowest observed for any iron-peroxo species. This observation may rationalize the reactivity of low-spin Fe(III)-OOH species such as "activated bleomycin".
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.