Inulin is an important reserve polysaccharide in Asteraceae plants, and is also widely used as a sweetener, a source of dietary fibre and prebiotic. Nevertheless, a lack of genomic resources for inulin‐producing plants has hindered extensive studies on inulin metabolism and regulation. Here, we present chromosome‐level reference genomes for four inulin‐producing plants: chicory (Cichorium intybus), endive (Cichorium endivia), great burdock (Arctium lappa) and yacon (Smallanthus sonchifolius), with assembled genome sizes of 1.28, 0.89, 1.73 and 2.72 Gb, respectively. We found that the chicory, endive and great burdock genomes were shaped by whole genome triplication (WGT‐1), and the yacon genome was shaped by WGT‐1 and two subsequent whole genome duplications (WGD‐2 and WGD‐3). A yacon unique whole genome duplication (WGD‐3) occurred 5.6–5.8 million years ago. Our results also showed the genome size difference between chicory and endive is largely due to LTR retrotransposons, and rejected a previous hypothesis that chicory is an ancestor of endive. Furthermore, we identified fructan‐active‐enzyme and transcription‐factor genes, and found there is one copy in chicory, endive and great burdock but two copies in yacon for most of these genes, except for the 1‐FEH II gene which is significantly expanded in chicory. Interestingly, inulin synthesis genes 1‐SST and 1‐FFT are located close to each other, as are the degradation genes 1‐FEH I and 1‐FEH II. Finally, we predicted protein structures for 1‐FFT genes to explore the mechanism determining inulin chain length.
Background Due to the importance of chicken production and the remarkable influence of the gut microbiota on host health and growth, tens of thousands of metagenome-assembled genomes (MAGs) have been constructed for the chicken gut microbiome. However, due to the limitations of short-read sequencing and assembly technologies, most of these MAGs are far from complete, are of lower quality, and include contaminant reads. Results We generated 332 Gb of high-fidelity (HiFi) long reads from the 5 chicken intestinal compartments and assembled 461 and 337 microbial genomes, of which 53% and 55% are circular, at the species and strain levels, respectively. For the assembled microbial genomes, approximately 95% were regarded as complete according to the “RNA complete” criteria, which requires at least 1 full-length ribosomal RNA (rRNA) operon encoding all 3 types of rRNA (16S, 23S, and 5S) and at least 18 copies of full-length transfer RNA genes. In comparison with the short-read-derived chicken MAGs, 384 (83% of 461) and 89 (26% of 337) strain-level and species-level genomes in this study are novel, with no matches to previously reported sequences. At the gene level, one-third of the 2.5 million genes in the HiFi-derived gene catalog are novel and cannot be matched to the short-read-derived gene catalog. Moreover, the HiFi-derived genomes have much higher continuity and completeness, as well as lower contamination; the HiFi-derived gene catalog has a much higher ratio of complete gene structures. The dominant phylum in our HiFi-assembled genomes was Firmicutes (82.5%), and the foregut was highly enriched in 5 genera: Ligilactobacillus, Limosilactobacillus, Lactobacillus, Weissella, and Enterococcus, all of which belong to the order Lactobacillales. Using GTDB-Tk, all 337 species-level genomes were successfully classified at the order level; however, 2, 35, and 189 genomes could not be classified into any known family, genus, and species, respectively. Among these incompletely classified genomes, 9 and 49 may belong to novel genera and species, respectively, because their 16S rRNA genes have identities lower than 95% and 97% to any known 16S rRNA genes. Conclusions HiFi sequencing not only produced metagenome assemblies and gene structures with markedly improved quality but also recovered a substantial portion of novel genomes and genes that were missed in previous short-read-based metagenome studies. The novel genomes and species obtained in this study will facilitate gut microbiome and host–microbiota interaction studies, thereby contributing to the sustainable development of poultry resources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.