This paper presents an application of neural networks operating on multimodal 3D data (3D point cloud, RGB, thermal) to effectively and precisely segment human hands and objects held in hand to realize a safe human–robot object handover. We discuss the problems encountered in building a multimodal sensor system, while the focus is on the calibration and alignment of a set of cameras including RGB, thermal, and NIR cameras. We propose the use of a copper–plastic chessboard calibration target with an internal active light source (near-infrared and visible light). By brief heating, the calibration target could be simultaneously and legibly captured by all cameras. Based on the multimodal dataset captured by our sensor system, PointNet, PointNet++, and RandLA-Net are utilized to verify the effectiveness of applying multimodal point cloud data for hand–object segmentation. These networks were trained on various data modes (XYZ, XYZ-T, XYZ-RGB, and XYZ-RGB-T). The experimental results show a significant improvement in the segmentation performance of XYZ-RGB-T (mean Intersection over Union: 82.8% by RandLA-Net) compared with the other three modes (77.3% by XYZ-RGB, 35.7% by XYZ-T, 35.7% by XYZ), in which it is worth mentioning that the Intersection over Union for the single class of hand achieves 92.6%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.