Infections by attaching and effacing (A/E) bacterial pathogens, such as Escherichia coli O157:H7, pose a serious threat to public health. Using a mouse A/E pathogen, Citrobacter rodentium, we show that interleukin-22 (IL-22) has a crucial role in the early phase of host defense against C. rodentium. Infection of IL-22 knockout mice results in increased intestinal epithelial damage, systemic bacterial burden and mortality. We also find that IL-23 is required for the early induction of IL-22 during C. rodentium infection, and adaptive immunity is not essential for the protective role of IL-22 in this model. Instead, IL-22 is required for the direct induction of the Reg family of antimicrobial proteins, including RegIIIbeta and RegIIIgamma, in colonic epithelial cells. Exogenous mouse or human RegIIIgamma substantially improves survival of IL-22 knockout mice after C. rodentium infection. Together, our data identify a new innate immune function for IL-22 in regulating early defense mechanisms against A/E bacterial pathogens.
Psoriasis is a chronic inflammatory skin disease characterized by hyperplasia of the epidermis (acanthosis), infiltration of leukocytes into both the dermis and epidermis, and dilation and growth of blood vessels. The underlying cause of the epidermal acanthosis in psoriasis is still largely unknown. Recently, interleukin (IL)-23, a cytokine involved in the development of IL-17-producing T helper cells (T(H)17 cells), was found to have a potential function in the pathogenesis of psoriasis. Here we show that IL-22 is preferentially produced by T(H)17 cells and mediates the acanthosis induced by IL-23. We found that IL-23 or IL-6 can directly induce the production of IL-22 from both murine and human naive T cells. However, the production of IL-22 and IL-17 from T(H)17 cells is differentially regulated. Transforming growth factor-beta, although crucial for IL-17 production, actually inhibits IL-22 production. Furthermore, IL-22 mediates IL-23-induced acanthosis and dermal inflammation through the activation of Stat3 (signal transduction and activators of transcription 3) in vivo. Our results suggest that T(H)17 cells, through the production of both IL-22 and IL-17, might have essential functions in host defence and in the pathogenesis of autoimmune diseases such as psoriasis. IL-22, as an effector cytokine produced by T cells, mediates the crosstalk between the immune system and epithelial cells.
T helper 17 (Th17) cells belong to a recently identified T helper subset, in addition to the traditional Th1 and Th2 subsets. These cells are characterized as preferential producers of interleukin-17A (IL-17A), IL-17F, IL-21, and IL-22. Th17 cells and their effector cytokines mediate host defensive mechanisms to various infections, especially extracellular bacteria infections, and are involved in the pathogenesis of many autoimmune diseases. The receptors for IL-17 and IL-22 are broadly expressed on various epithelial tissues. The effector cytokines of Th17 cells, therefore, mediate the crucial crosstalk between immune system and tissues, and play indispensable roles in tissue immunity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.