This paper fully determines the degree-of-freedom (DoF) region of two-user interference channels with arbitrary number of transmit and receive antennas in the case of isotropic and independent (or block-wise independent) fading, where the channel state information is available to the receivers but not to the transmitters. The result characterizes the capacity region to the first order of the logarithm of the signal-to-noise ratio (SNR) in the high-SNR regime. The DoF region is achieved using random Gaussian codebooks independent of the channel states, which implies that it is impossible to increase the DoF using beamforming and interference alignment in the absence of channel state information at the transmitters.
Index TermsCapacity region, channel state information, degree of freedom (DoF), interference channel, isotropic fading, multiple antennas, multiple-input multiple-output (MIMO) channel, wireless networks.
Abstract:In this paper, a dynamic impregnating device, which can generate supersonic vibration with the vacuum-adsorbing field, was used to prepare the hybrid graphene oxide (GO)/polyethylene glycol (PEG). Interestingly, the hybrid GO/PEG under dynamic impregnating and/or internal mixing was introduced into poly-(lactic acid) (PLA) matrix via melting-compounding, respectively. On one hand, compared with the internal mixing, the hybrid GO/PEG with the different component ratio using dynamic impregnation had a better dispersed morphology in the PLA matrix. On the other hand, compared with the high molecular weight (M w ) of PEG, the hybrid GO/PEG with low M w of PEG had better an exfoliated morphology and significantly improved the heat distortion temperature (HDT) of the PLA matrix. Binding energies results indicate that low M w of PEG with GO has excellent compatibility. Dispersed morphologies of the hybrid GO/PEG show that the dynamic impregnating had stronger blending capacity than the internal mixing and obviously improved the exfoliated morphology of GO in the PLA. Crystallization behaviors indicate that the hybrid GO/PEG with the low M w of PEG based on dynamic impregnating effectively enhanced the crystallinity of PLA, and the cold crystallization character of PLA disappeared in the melting process. Moreover, the storage modulus and loss factor of the PLA-based composites were also investigated and their HDT was improved with the introduction of hybrid GO/PEG. Furthermore, a physical model for the dispersed morphology of the hybrid GO/PEG in the PLA matrix was established. Overall, the unique blending technique of hybrid GO/PEG via dynamic impregnating is an effective approach to enhance the property range of PLA and is suitable for many industrial applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.