Light-dependent seed germination is a vital process for many seed plants. A decisive event in light-induced germination is degradation of the central repressor PHYTOCHROME INTERACTING FACTOR 1 (PIF1). The balance between gibberellic acid (GA) and abscisic acid (ABA) helps to control germination. However, the cellular mechanisms linking PIF1 turnover to hormonal balancing remain elusive. Here, employing far-red light-induced Arabidopsis thaliana seed germination as the experimental system, we identified PLANTACYANIN (PCY) as an inhibitor of germination. It is a blue copper protein associated with the vacuole that is both highly expressed in mature seeds and rapidly silenced during germination. Molecular analyses showed that PIF1 binds to the miR408 promoter and represses miR408 accumulation. This in turn posttranscriptionally modulates PCY abundance, forming the PIF1-miR408-PCY repression cascade for translating PIF1 turnover to PCY turnover during early germination. Genetic analysis, RNA-sequencing, and hormone quantification revealed that PCY is necessary and sufficient to maintain the PIF1-mediated seed transcriptome and the low-GA-high-ABA state. Furthermore, we found that PCY domain organization and regulation by miR408 are conserved features in seed plants. These results revealed a cellular mechanism whereby PIF1-relayed external light signals are converted through PCY turnover to internal hormonal profiles for controlling seed germination.
Suppressors of cytokine signaling, SOCS1 and SOCS3, are important negative regulators of Janus kinase 2/signal transducers and activators of transcription signaling, which is constitutively activated in myeloproliferative neoplasms (MPNs) and leukemia. Curcumin has been shown to possess anticancer activity through different mechanisms. However, whether curcumin can regulate the expression of SOCS1 and SOCS3 is still unknown. Here, we found that curcumin elevated the expression of SOCS1 and SOCS3 via triggering acetylation of histone in the regions of SOCS1 and SOCS3 promoter in K562 and HEL cells. As a novel histone deacetylases (HDACs) inhibitor, curcumin inhibited HDAC enzyme activities and decreased the levels of HDAC1, 3 and 8 but not HDAC2. Knockdown of HDAC8 by small interfering RNA markedly elevated the expression of SOCS1 and SOCS3. Moreover, ectopic expression of HDAC8 decreased the levels of SOCS1 and SOCS3. Thus, HDAC8 plays an important role in the modulation of SOCS1 and SOCS3 by curcumin. Also, trichostatin A (TSA), an inhibitor of HDACs, increased the levels of SOCS1 and SOCS3. Furthermore, curcumin increased the transcript levels of SOCS1 and SOCS3 and significantly inhibited the clonogenic activity of hematopoietic progenitors from patients with MPNs. Finally, curcumin markedly inhibited HDAC activities and decreased HDAC8 levels in primary MPN cells. Taken together, our data uncover a regulatory mechanism of SOCS1 and SOCS3 through inhibition of HDAC activity (especially HDAC8) by curcumin. Thus, being a relative non-toxic agent, curcumin may offer a therapeutic advantage in the clinical treatment for MPNs.
In his Ph.D. thesis, Ira Gessel proved a reciprocity formula for noncommutative symmetric functions which enables one to count words and permutations with restrictions on the lengths of their increasing runs. We generalize Gessel's theorem to allow for a much wider variety of restrictions on increasing run lengths, and use it to complete the enumeration of permutations with parity restrictions on peaks and valleys, and to give a systematic method for obtaining generating functions for permutation statistics that are expressible in terms of increasing runs. Our methods can also be used to obtain analogous results for alternating runs in permutations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.