Congestion control (CC) is the key to achieving ultra-low latency, high bandwidth and network stability in high-speed networks. From years of experience operating large-scale and high-speed RDMA networks, we find the existing high-speed CC schemes have inherent limitations for reaching these goals. In this paper, we present HPCC (High Precision Congestion Control), a new high-speed CC mechanism which achieves the three goals simultaneously. HPCC leverages in-network telemetry (INT) to obtain precise link load information and controls traffic precisely. By addressing challenges such as delayed INT information during congestion and overreaction to INT information, HPCC can quickly converge to utilize free bandwidth while avoiding congestion, and can maintain near-zero in-network queues for ultra-low latency. HPCC is also fair and easy to deploy in hardware. We implement HPCC with commodity programmable NICs and switches. In our evaluation, compared to DCQCN and TIMELY, HPCC shortens flow completion times by up to 95%, causing little congestion even under large-scale incasts.
CCS CONCEPTS• Networks → Transport protocols; Data center networks;
We report measurements of the frequency and temperature dependence of ferro-magnetic resonance (FMR) for a 15-nm-thick yttrium iron garnet (YIG) film grown by off-axis sputtering. Although the FMR linewidth is narrow at room temperature (corresponding to a damping coefficient α = (9.0 ± 0.2) ×10 −4), comparable to previous results for high-quality YIG films of similar thickness, the linewidth increases strongly at low temperatures, by a factor of almost 30. This increase cannot be explained as due to two-magnon scattering from defects at the sample interfaces. We argue that the increased low-temperature linewidth is due to impurity relaxation mechanisms that have been investigated previously in bulk YIG samples. We suggest that the low-temperature linewidth is a useful figure of merit to guide the optimization of thin-film growth protocols because it is a particularly sensitive indicator of impurities.
Silver nanoparticles were assembled on polyvinylpyridine (PVP) derivatized glass slides. Charge transfer between the adsorbed 4-aminothiophenol (PATP) and the immobilized silver nanoparticles was studied by surface-enhanced Raman spectroscopy with 1064 nm excitation, and compared with that of the silver nanoparticles in the colloid. It was demonstrated that the positive charges of the PVP layer could alter the charge distribution in the immobilized nanoparticles and induce the formation of the dipole in the nanoparticles, leading to less charge transfer from the metal to the adsorbed molecules. The coadsorption of chloride ions on the surface of the immobilized silver nanoparticles resulted in the redistribution of the charges in the nanoparticles and, in turn, altered the charge transfer between the adsorbed PATP molecules and the silver nanoparticles.
Abstract-We demonstrate, for the first time to our knowledge, a passive, electrically tunable integrated radio frequency (RF) inductor based on a planar solenoid with a thin-film ferromagnetic(FM) (NiFe) core. Variation of inductance is achieved by leading an additional dc current through the same device, thereby changing the effective permeability of the FM core. Tuning ranges (relative variations in inductance) of 85%, 35%, and 20% are achieved at 0.1, 1, and 2 GHz, respectively, for inductances in the range of 1 to 150 nH.Index Terms-Inductor, on-chip, radio frequency (RF), tunable circuits and devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.