The existing centralized power supply system has the alternative due to distributed generation. By certain conditions distributed cogeneration allows to increase the reliability and quality of power supply and to reduce the cost of electricity for consumers. Therefore, a lot of energy-intensive consumers switched to their own power supply systems, as it turned out to be a competitive technical solution. The total gasification of the country’s regions and the presence of domestic manufacturers of gas turbine and gas piston power plants accelerated this process. Nowadays local power systems are emerging with cogeneration plants are the main source of heat and electricity there. The feasibility justification of the kind and type of generation is determined by many factors, including circuit-mode parameters in the local power system and adjacent network. Local power systems based on the principles of self-balance are proposed to name as energy cells. The integration of energy cells with regional power system increases the technical and economic effectiveness of power supply system for consumers. The proposed power systems transition leads to certain systemic effects. Received effects are depending on functions of distributed generation. This paper explores the impact of scheme and mode factor on the technical effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.