The microstructure of the binary polymer brushes in the selective solvent was studied using the numerical lattice self-consisting field approach. The case was considered when the selectivity to the solvent (the Flory–Huggins parameter χ) was varied only for one type of chains (responsive chains) while the others (non-responsive chains) remained hydrophilic (χ = 0). In such a brush, with an increase in the hydrophobicity of the responsive chains, a transition occurs between two two-layer microstructures. In the initial state the ends of the longer responsive chains are located near the external surface of the brush and those of non-responsive chains are inside the brush. When the hydrophobicity of the responsive chains becomes high enough then the reversed two-layer microstructure is formed, when the ends of non-responsive chains are located near the brush surface and the responsive chains collapse on the brush bottom. In contrast to previous works, the stiffness parameter (Kuhn segment length p) for one or for both types of chains was varied and its effect on the mechanism and characteristics of the transition was studied. If the stiffness of only responsive chains increases, then the transition occurs with the formation of an intermediate three-layer microstructure, where a layer of responsive chains is located between layers formed by non-responsive ones. If both types of chains have the same p, then the transition occurs gradually without the formation of an intermediate three-layer microstructure. For both cases, the effect of p on the critical value of χ*, corresponding to the transition point and on the steepness of the transition was investigated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.