Weather conditions is an air condition in a place with a relatively short time, which is expressed by the value of parameters such as temperature, wind speed, pressure, rainfall, which is another atmospheric phenomenon as the main component. Human activities can be influenced by weather conditions, such as transportation, agriculture, plantation, construction or even sports. Therefore, for determining the weather, getting weather information needs to be made so that it can be utilized by the community. Problems that arise how to make weather predictions automatically so that it can be done by everyone. In this study proposed several algorithms Navie Bayes, Decision Tree, Random Forest to calculate the opportunities of one class from each of the existing group attributes and determine which class is the most optimal, meaning that grouping can be done based on the categories that users enter in the application. The prediction system has been made to obtain an accuracy rate of Navie Bayes of 77.22% with a standard deviation of 29%, a Decision Tree accuracy rate of 79.46% with a standard deviation of 15%, a random forest accuracy rate of 82.38% with a standard deviation of 43%.
Banyak jenis penyakit yang disebabkan oleh gigitan nyamuk salah satu penyakitnya yaitu filariasis. Filariasis menyebar di seluruh daerah di Indonesia, dan mengalami peningkatan setiap tahunnya semenjak tahun 2002 sampai tahun 2014. Penyakit ini diprediksi akan terus meningkat setiap tahunnya apabila tidak dilakukan tindakan lebih lanjut. Maka penelitian ini dilakukan untuk mencegah atau penanggulangan dengan menggunakan teknik komputasi yaitu algoritma k-means. Algoritma k-means berfungsi untuk mengelompokan data sehingga mampu mengelompokan daerah yang terdapat penderita filariasis untuk menunjang suatu keputusan dalam pencegahan atau penanggulangan. Dari hasil pengelompokan daerah penderita filariasis berdasarkan provinsi menghasilkan tiga clustering. Clustering tinggi menghasilkan dua provinsi (Provinsi Aceh dan provinsi Nusa Tenggara Timur), pada clustering sedang terdapat dua provinsi (Provinsi Papua dan Provinsi Papua Barat) sedangkan yang 29 provinsi lainnya termasuk ke dalam clustering rendah
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.