The giant phiKZ phage infection induces the appearance of a pseudo-nucleus inside the bacterial cytoplasm. Here, we used RT-PCR, fluorescent in situ hybridization (FISH), electron tomography, and analytical electron microscopy to study the morphology of this unique nucleus-like shell and to demonstrate the distribution of phiKZ and bacterial DNA in infected Pseudomonas aeruginosa cells. The maturation of the pseudo-nucleus was traced in short intervals for 40 min after infection and revealed the continuous spatial separation of the phage and host DNA. Immediately after ejection, phage DNA was located inside the newly-identified round compartments; at a later infection stage, it was replicated inside the pseudo-nucleus; in the mature pseudo-nucleus, a saturated internal network of filaments was observed. This network consisted of DNA bundles in complex with DNA-binding proteins. On the other hand, the bacterial nucleoid underwent significant rearrangements during phage infection, yet the host DNA did not completely degrade until at least 40 min after phage application. Energy dispersive x-ray spectroscopy (EDX) analysis revealed that, during the infection, the sulfur content in the bacterial cytoplasm increased, which suggests an increase of methionine-rich DNA-binding protein synthesis, whose role is to protect the bacterial DNA from stress caused by infection.
One of the adaptive strategies for the constantly changing conditions of the environment utilized in bacterial cells involves the condensation of DNA in complex with the DNA-binding protein, Dps. With the use of electron microscopy and electron tomography, we observed several morphologically different types of DNA condensation in dormant
Escherichia coli
cells, namely:
nanocrystalline
,
liquid crystalline
, and the
folded nucleosome-like
. We confirmed the presence of both Dps and DNA in all of the ordered structures using EDX analysis. The comparison of EDX spectra obtained for the three different ordered structures revealed that in
nanocrystalline
formation the majority of the Dps protein is tightly bound to nucleoid DNA. The
dps
-null cells contained only one type of condensed DNA structure,
liquid crystalline
, thus, differing from those with Dps. The results obtained here shed some light on the phenomenon of DNA condensation in dormant prokaryotic cells and on the general problem of developing a response to stress. We demonstrated that the population of dormant cells is structurally heterogeneous, allowing them to respond flexibly to environmental changes. It increases the ability of the whole bacterial population to survive under extreme stress conditions.
One of the adaptive strategies for the constantly changing conditions of the environment utilized in bacterial cells involves the condensation of DNA in complex with the DNA-binding protein, Dps. With the use of electron microscopy and electron tomography, we observed several morphologically different types of DNA condensation in dormant Escherichia coli cells, namely: nanocrystalline, liquid crystalline, and the folded nucleosome-like. We confirmed the presence of both Dps and DNA in all of the ordered structures using EDX analysis. The comparison of EDX spectra obtained for the three different ordered structures revealed that in nanocrystalline formation the majority of Dps protein is tightly bound to nucleoid DNA. We demonstrated that the population of the dormant cell is structurally heterogeneous, which allows cells to respond flexibly to environmental changes. It increases the ability of the whole bacterial population to survive under extreme stress conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.