Geochemical risk is caused by the release of hazardous chemicals to the earth surface. Primary diamond deposits are located in difficult mining and geological conditions. They represent natural geochemical anomalies associated with the mineral composition of rocks and groundwater, which contain a number of impurity elements with high toxic properties (Tl, Di, As, Cd, Hg), increased concentrations of heavy metals (Cu, Zn, Pb, Ti, V and others). The paper presents the physical-geographical and mining-geological conditions of the diamondiferous region, where three large mining and processing divisions operate: Udachninsky, Aikhalsky and Nyurbinsky. pH, organic matter (humus), total nitrogen, physical clay were identified in the study samples, by using potentiometric, photoelectric colorimetric, spectrophotometric methods and pipette method for particle size analysis. Gross and mobile forms of trace elements were determined by atomic absorption and emission spectrometry. The groups of elements were identified, that determined the natural and man-made anomalies. The accumulation of Cr, Ni and Co determines the influence of kimberlite magmatism in general. Cu, Sr and Li are accumulated in the soils of the Daldyn-Alakit diamond-bearing region. Increased concentrations of Mn and Cu are typical in the soils of the Sredne-Markhinsky diamond-bearing region. An assessment of the ecological and geochemical state of the study areas was carried out according to the indicator of total pollution (Zc), which is the sum of the excess of the concentration coefficients of chemical elements accumulating in anomalies. Areas of pollution and zones of the greatest risk are localized, which occupy up to 75% of the total area of industrial sites. They confined to quarry-dump complexes and to areas of impact of tailing dumps of processing plants.
This study was conducted in the territory of the industrial site of the Udachny Mining and Processing Division (Yakutia, northeast Russia). The objects of study were permafrost soils and two species of shrubs (Betula middendorffii T. and Duschekia fruticose R.). Soil and plant samples were analyzed using atomic absorption spectrometry for the presence of PTEs (Pb, Ni, Mn, Cd, Co, Cr, Zn, Cu, and As). The bioaccumulation factor (BAF), frequency of occurrence (Hi), pollution index (PI), and pollution load index (PLI) were calculated. The PI and PLI are calculated for both soil and two plant species for the first time in this study. The results showed that the soils have a high Ni, Cr, Co, As, and Mn content. It has been established that high soil pollution naturally leads to an increase in the concentration of elements in the leaves of shrubs. The soils and vegetation are dominated by elements associated with trap magmatism—Cr, Co, Cu, and dolerite dikes—Mn and Zn. For Betula middendorffii, the PLI was classified as unpolluted to moderately polluted, and Duschekia fruticosa. was classified as unpolluted. The high level of contamination is typical for areas located near industrial sites, such as waste dumps, kimberlite pipes, tailings ponds, and roads. The BAF results confirmed that the leaves of Betula middendorffii are able to accumulate more PTEs and have the highest level of resistance to PTE contamination in mining environments. This analysis showed that the consistent application of the PI, PLI, and BAF indices is very efficient in the ecological and biogeochemical assessment of the situation in industrial development areas.
This article presents the results of long-term research and monitoring of the soil cover exposed to the impact of the mining and processing plant developing diamond deposits in the northeast of Siberia. The soil collection includes 436 samples of different types of Cryosols. Soil pH; soil organic carbon (SOC); granulometric composition; and mobile forms of Pb, Ni, Mn, Cd, Co, Cr, Zn, Cu, and As were identified in the samples. Multivariate statistics of the correlation matrix, clustering analysis (CA), and principal component analysis (PCA) were used to determine the sources of heavy metals. The intensity of the accumulation of chemical elements in the soil was assessed using calculated concentration coefficients (Kc) and the index of total contamination of the soil cover (Zc). In the study area, Cryosols are characterized by biogenic accumulation of Ni, Mn, and Cd in the upper soil layer and Cr, Ni, Co, Mn, and Cu in the suprapermafrost horizon. Correlation matrix, CA, and PCA revealed three distinct sources that could be considered for the investigated potentially toxic elements (PTEs): anthropogenic, lithogenic, and the source which comes from a mixed contribution of anthropogenic and lithogenic factors. The most anthropogenic contribution in the heavy metals in the study area appears in Zn, Cd, As, and Pb. The assessment interpreted that origin of Mn in the area is most likely to be a natural source. The content of Co, Cr, and Ni are controlled by both lithogenic control and anthropogenic sources. Active accumulation of mobile forms of Mn, Zn, and Ni with anomalously high concentration coefficients can be traced in the soils in the impact zone of mining operations. Anthropogenic soil contamination is spread over an area of 260 km2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.