Doenças Pulmonares Intersticiais (DPIs) são caracterizadas pela cicatrização progressiva do interstício pulmonar e podem levar a insuficiência respiratória. Este artigo propõe um método de classificação de DPIs a partir de imagens de Tomografia Computadorizada (TC) mapeadas em uma Rede Complexa. Métricas de centralidade foram usadas com o objetivo de obter seus atributos texturais. Utilizando um classificador KNN, os resultados apresentaram uma acurácia média de 89.81%. Para os padrões de textura de DPI do tipo consolidação pulmonar e opacidade em vidro fosco, a acurácia do método foi de 90% e 86%, respectivamente, o que aponta o método proposto como promissor para estudos futuros em imagens de TC associadas a pacientes com COVID-19.
Problems of texture classification are consistently challenging once the patterns of different instances can be very similar. In the context of medical imaging, this group of methods can aid in diagnosing patients as part of the concept of Computer-Aided Diagnosis (CAD). In this paper, we propose a method for texture classification in the context of classifying Interstitial Pulmonary Diseases (IPDs) on high-resolution Computed Tomographies (CTs) using concepts of complex networks and statistical metrics. Our approach is based on mapping the input image into multiscale graphs and extracting the closeness centrality metric. We combine the feature vector resulting from the closeness analysis with Haralick and Local Binary Pattern descriptors. We analyze the proposed approach’s performance by comparing it with other methods and discussing its metrics for each class (IPD pattern) of the dataset. Based on the results, we can highlight our technique as an aid on the problem of diagnosing patients with COVID-19.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.