The tembang macapat can be classified using its cultural concepts of guru lagu, guru wilangan, and guru gatra. People may face difficulties recognizing certain songs based on the established rules. This study aims to build classification models of tembang macapat using a simple yet powerful Naïve Bayes classifier. The Naive Bayes can generate high-accuracy values from sparse data. This study modifies the concept of Guru Lagu by retrieving the last vowel of each line. At the same time, guru wilangan’s guidelines are amended by counting the number of all characters (Model 2) rather than calculating the number of syllables (Model 1). The data source is serat wulangreh with 11 types of tembang macapat, namely maskumambang, mijil, sinom, durma, asmaradana, kinanthi, pucung, gambuh, pangkur, dandhanggula, and megatruh. The k-fold cross-validation is used to evaluate the performance of 88 data. The result shows that the proposed Model 1 performs better than Model 2 in macapat classification. This promising method opens the potential of using a data mining classification engine as cultural teaching and preservation media.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.