The maturation of human pluripotent stem cell (hPSC)-derived neurons mimics the protracted timing of human brain development, extending over months and years to reach adult-like function. Prolonged in vitro maturation presents a major challenge to stem cell-based applications in modeling and treating neurological disease. We designed a high-content imaging assay based on morphological and functional readouts in hPSC-derived cortical neurons to reveal underlying pathways and to identify chemicals capable of accelerating neuronal maturation. Probing a library of 2688 bioactive drugs, we identified multiple compounds that drive neuronal maturation including inhibitors of LSD1 and DOT1L and activators of calcium-dependent transcription. A cocktail of 4 factors GSK-2879552, EPZ-5676, NMDA and Bay K 8644, which we collectively termed GENtoniK, triggered maturation across all assays tested including measures of synaptic density, electrophysiology and transcriptomics. Remarkably, GENtoniK was similarly effective in enhancing neuronal maturation in 3D cortical organoids and in spinal motoneurons, and improved aspects of cell maturation in non-neural lineages such as melanocytes and pancreatic beta cells. These results demonstrate that the maturation of multiple hPSC-derived cell types can be enhanced by simple pharmacological intervention and suggests that some of the mechanisms controlling the timing of human maturation are shared across lineages.
In multiple sclerosis (MS), demyelinated CNS lesions fail to sufficiently remyelinate, despite the presence of oligodendrocyte precursor cells (OPCs) capable of differentiating into mature oligodendrocytes. MS lesions contain damaged myelin debris that can inhibit OPC maturation and hinder repair. rHIgM22 is an experimental human recombinant IgM antibody that promotes remyelination in animal models and is being examined in patients with MS. rHIgM22 binds to CNS myelin and partially rescues OPC process outgrowth on myelin. Since rHIgM22 does not affect OPC process outgrowth in vitro on permissive substrate, we examined the possibility that it acts by enhancing phagocytic clearance of myelin debris by microglia. In this study, we tested if rHIgM22 binding could tag myelin for microglial phagocytosis. A mouse microglial cell line and primary rat microglia were treated with myelin and rHIgM22 and assayed for myelin phagocytosis. We found that: 1) rHIgM22 stimulates myelin phagocytosis in a dose-dependent manner; 2) rHIgM22-mediated myelin phagocytosis requires actin polymerization; and 3) rHIgM22-stimulation of myelin phagocytosis requires activity of rHIgM22 Fc domain and activation of Complement Receptor 3. Since myelin inhibits OPC differentiation, stimulation of phagocytic clearance of damaged myelin may be an important means by which rHIgM22 promotes remyelination.
Axonal regeneration in the mature CNS is limited by extracellular inhibitory factors. Triple knockout mice lacking the major myelin-associated inhibitors do not display spontaneous regeneration after injury, indicating the presence of other inhibitors. Searching for such inhibitors, we have detected elevated levels of histone H3 in human cerebrospinal fluid (CSF) 24 hours after spinal cord injury (SCI). Following dorsal column lesions in mice and optic nerve crushes in rats, elevated levels of extracellular histone H3 were detected at the injury site. Similar to myelin-associated inhibitors, these extracellular histones induced growth cone collapse and inhibited neurite outgrowth. Histones mediate inhibition through the transcription factor Y-box-binding protein1 (YB-1) and Toll-like receptor (TLR) 2, and these effects are independent of the Nogo receptor (NgR). Histone-mediated inhibition can be reversed by the addition of activated protein C (APC) in vitro, and activated protein C treatment promotes axonal regeneration in the crushed optic nerve in vivo. These findings identify extracellular histones as a new class of nerve regeneration-inhibiting molecules within the injured CNS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.