We present a new two-stage 3D object detection framework, named sparse-to-dense 3D Object Detector (STD). The first stage is a bottom-up proposal generation network that uses raw point cloud as input to generate accurate proposals by seeding each point with a new spherical anchor. It achieves a high recall with less computation compared with prior works. Then, PointsPool is applied for generating proposal features by transforming their interior point features from sparse expression to compact representation, which saves even more computation time. In box prediction, which is the second stage, we implement a parallel intersection-over-union (IoU) branch to increase awareness of localization accuracy, resulting in further improved performance. We conduct experiments on KITTI dataset, and evaluate our method in terms of 3D object and Bird's Eye View (BEV) detection. Our method outperforms other stateof-the-arts by a large margin, especially on the hard set, with inference speed more than 10 FPS.
Convolutional Neural Networks (CNNs) have gained a remarkable success on many real-world problems in recent years. However, the performance of CNNs is highly relied on their architectures. For some state-of-the-art CNNs, their architectures are hand-crafted with expertise in both CNNs and the investigated problems. To this end, it is difficult for researchers, who have no extended expertise in CNNs, to explore CNNs for their own problems of interest. In this paper, we propose an automatic architecture design method for CNNs by using genetic algorithms, which is capable of discovering a promising architecture of a CNN on handling image classification tasks. The proposed algorithm does not need any pre-processing before it works, nor any post-processing on the discovered CNN, which means it is completely automatic. The proposed algorithm is validated on widely used benchmark datasets, by comparing to the state-of-the-art peer competitors covering eight manually designed CNNs, four semi-automatically designed CNNs and additional four automatically designed CNNs. The experimental results indicate that the proposed algorithm achieves the best classification accuracy consistently among manually and automatically designed CNNs. Furthermore, the proposed algorithm also shows the competitive classification accuracy to the semi-automatic peer competitors, while reducing 10 times of the parameters. In addition, on the average the proposed algorithm takes only one percentage of computational resource compared to that of all the other architecture discovering algorithms. Index Terms-Convolutional neural network, genetic algorithm, neural network architecture optimization, evolutionary deep learning.✦
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.