Understanding the behavior of an impurity strongly interacting with a Fermi sea is a long-standing challenge in many-body physics. When the interactions are short ranged, two vastly different ground states exist: a polaron quasiparticle and a molecule dressed by the majority atoms. In the single-impurity limit, it is predicted that at a critical interaction strength, a first-order transition occurs between these two states. Experiments, however, are always conducted in the finite temperature and impurity density regime. The fate of the polaron-to-molecule transition under these conditions, where the statistics of quantum impurities and thermal effects become relevant, is still unknown. Here, we address this question experimentally and theoretically. Our experiments are performed with a spin-imbalanced ultracold Fermi gas with tunable interactions. Utilizing a novel Raman spectroscopy combined with a high-sensitivity fluorescence detection technique, we isolate the quasiparticle contribution and extract the polaron energy, spectral weight, and the contact parameter. As the interaction strength is increased, we observe a continuous variation of all observables, in particular a smooth reduction of the quasiparticle weight as it goes to zero beyond the transition point. Our observation is in good agreement with a theoretical model where polaron and molecule quasiparticle states are thermally occupied according to their quantum statistics. At the experimental conditions, polaron states are hence populated even at interactions where the molecule is the ground state and vice versa. The emerging physical picture is thus that of a smooth transition between polarons and molecules and a coexistence of both in the region around the expected transition. Our findings establish Raman spectroscopy as a powerful experimental tool for probing the physics of mobile quantum impurities and shed new light on the competition between emerging fermionic and bosonic quasiparticles in non-Fermi-liquid phases.
Shortcuts to adiabaticity are techniques allowing rapid variation of the system Hamiltonian without inducing excess heating. Fast optical transfer of atoms between different locations is an important application of shortcuts to adiabaticity. We show that the common boundary conditions on the atomic position, which are imposed to find the driving trajectory, lead to highly non-practical boundary conditions for the optical trap. Our experimental results demonstrate that, as a result, previously suggested trajectories are likely to fall short of the expectation. We develop two complementary methods that solve this boundary conditions problem by adding more degrees of freedom to the trajectory parameter space. In the first method, this is achieved by the addition of a spectral component at the trapping frequency, while in the second we use a polynomial trajectory of an order high enough to account for the new boundary conditions. We experimentally demonstrate that this approach allows us to construct highly non-adiabatic movements with no residual sloshing. Our techniques can also account for non-harmonic terms in the confining potential.
rf spectroscopy is one of the most powerful probing techniques in the field of ultracold gases. We report on a novel rf spectroscopy scheme with which we can detect very weak signals of only a few atoms. Using this method, we extended the experimentally accessible photon-energies range by an order of magnitude compared to previous studies. We directly verify a universal property of fermions with short-range interactions which is a power-law scaling of the rf spectrum tail all the way up to the interaction scale. We also determine, with high precision, the trap average contact parameter for different interaction strength. Finally, we employ our technique to precisely measure the binding energy of Feshbach molecules in an extended range of magnetic fields. These data are used to extract a new calibration of the Feshbach resonance between the two lowest energy levels of ^{40}K.
The ability to directly measure the momentum distribution of quantum gases is both unique to these systems and pivotal in extracting many other important observables. Here we use Raman transitions to measure the momentum distribution of a weakly-interacting Fermi gas in a harmonic trap. For narrow atomic dispersions, momentum and energy conservation imply a linear relation between the two-photon detuning and the atomic momentum. We detect the number of atoms transferred by the Raman beams using sensitive fluorescence detection in a magneto-optical trap. We employ this technique to a degenerate weakly-interacting Fermi gas at different temperatures. The measured momentum distributions match theoretical curves over two decades, and the extracted temperatures are in very good agreement with the ones obtained from a conventional time-of-flight technique. The main advantages of our measurement scheme are that it can be spatially selective and applied to a trapped gas, it can be completed in a relatively short time, and due to its high sensitivity, it can be used with very small clouds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.