ObjectStudies have suggested that depression was accompanied by oxidative stress dysregulation, including abnormal total antioxidant capacity (TAC), antioxidants, free radicals, oxidative damage and autoimmune response products. This meta-analysis aims to analyse the clinical data quantitatively by comparing the oxidative stress markers between depressed patients and healthy controls.MethodsA search was conducted to collect the studies that measured the oxidative stress markers in depressed patients. Studies were searched in Embase, Medline, PsychINFO, Science direct, CBMDisc, CNKI and VIP from 1990 to May 2015. Data were subjected to meta-analysis by using a random effects model for examining the effect sizes of the results. Bias assessments, heterogeneity assessments and sensitivity analyses were also conducted.Results115 articles met the inclusion criteria. Lower TAC was noted in acute episodes (AEs) of depressed patients (p<0.05). Antioxidants, including serum paraoxonase, uric acid, albumin, high-density lipoprotein cholesterol and zinc levels were lower than controls (p<0.05); the serum uric acid, albumin and vitamin C levels were increased after antidepressant therapy (p<0.05). Oxidative damage products, including red blood cell (RBC) malondialdehyde (MDA), serum MDA and 8-F2-isoprostanes levels were higher than controls (p<0.05). After antidepressant medication, RBC and serum MDA levels were decreased (p<0.05). Moreover, serum peroxide in free radicals levels were higher than controls (p<0.05). There were no differences between the depressed patients and controls for other oxidative stress markers.ConclusionThis meta-analysis supports the facts that the serum TAC, paraoxonase and antioxidant levels are lower, and the serum free radical and oxidative damage product levels are higher than controls in depressed patients. Meanwhile, the antioxidant levels are increased and the oxidative damage product levels are decreased after antidepressant medication. The pathophysiological relationships between oxidative stress and depression, and the potential benefits of antioxidant supplementation deserve further research.
The aim of this study was to develop and validate a method of disease classification for bipolar disorder (BD) by functional activity and connectivity using radiomics analysis. Ninety patients with unmedicated BD II as well as 117 healthy controls underwent resting-state functional magnetic resonance imaging (rs-fMRI). A total of 4 types of 7018 features were extracted after preprocessing, including mean regional homogeneity (mReHo), mean amplitude of low-frequency fluctuation (mALFF), resting-state functional connectivity (RSFC), and voxel-mirrored homotopic connectivity (VMHC). Then, predictive features were selected by Mann–Whitney U test and removing variables with a high correlation. Least absolute shrinkage and selection operator (LASSO) method was further used to select features. At last, support vector machine (SVM) model was used to estimate the state of each subject based on the selected features after LASSO. Sixty-five features including 54 RSFCs, 7 mALFFs, 1 mReHo, and 3 VMHCs were selected. The accuracy and area under curve (AUC) of the SVM model built based on the 65 features is 87.3% and 0.919 in the training dataset, respectively, and the accuracy and AUC of this model validated in the validation dataset is 80.5% and 0.838, respectively. These findings demonstrate a valid radiomics approach by rs-fMRI can identify BD individuals from healthy controls with a high classification accuracy, providing the potential adjunctive approach to clinical diagnostic systems.
Bipolar disorder (BD), particularly BD II, is frequently misdiagnosed as unipolar depression (UD), leading to inappropriate treatment and poor clinical outcomes. Although depressive symptoms may be expressed similarly in UD and BD, the similarities and differences in the architecture of brain functional networks between the two disorders are still unknown. In this study, we hypothesized that UD and BD II patients would show convergent and divergent patterns of disrupted topological organization of the functional connectome, especially in the default mode network (DMN) and the limbic network. Brain resting-state functional magnetic resonance imaging (fMRI) data were acquired from 32 UD-unmedicated patients, 31 unmedicated BD II patients (current episode depressed) and 43 healthy subjects. Using graph theory, we systematically studied the topological organization of their whole-brain functional networks at the following three levels: whole brain, modularity and node. First, both the UD and BD II patients showed increased characteristic path length and decreased global efficiency compared with the controls. Second, both the UD and BD II patients showed disrupted intramodular connectivity within the DMN and limbic system network. Third, decreased nodal characteristics (nodal strength and nodal efficiency) were found predominantly in brain regions in the DMN, limbic network and cerebellum of both the UD and BD II patients, whereas differences between the UD and BD II patients in the nodal characteristics were also observed in the precuneus and temporal pole. Convergent deficits in the topological organization of the whole brain, DMN and limbic networks may reflect overlapping pathophysiological processes in unipolar and bipolar depression. Our discovery of divergent regional connectivity that supports emotion processing could help to identify biomarkers that will aid in differentiating these disorders.
BackgroundPrevious studies have analyzed brain functional connectivity to reveal the neural physiopathology of bipolar disorder (BD) and major depressive disorder (MDD) based on the triple-network model [involving the salience network, default mode network (DMN), and central executive network (CEN)]. However, most studies assumed that the brain intrinsic fluctuations throughout the entire scan are static. Thus, we aimed to reveal the dynamic functional network connectivity (dFNC) in the triple networks of BD and MDD.MethodsWe collected resting state fMRI data from 51 unmedicated depressed BD II patients, 51 unmedicated depressed MDD patients, and 52 healthy controls. We analyzed the dFNC by using an independent component analysis, sliding window correlation and k-means clustering, and used the parameters of dFNC state properties and dFNC variability for group comparisons.ResultsThe dFNC within the triple networks could be clustered into four configuration states, three of them showing dense connections (States 1, 2, and 4) and the other one showing sparse connections (State 3). Both BD and MDD patients spent more time in State 3 and showed decreased dFNC variability between posterior DMN and right CEN (rCEN) compared with controls. The MDD patients showed specific decreased dFNC variability between anterior DMN and rCEN compared with controls.ConclusionsThis study revealed more common but less specific dFNC alterations within the triple networks in unmedicated depressed BD II and MDD patients, which indicated their decreased information processing and communication ability and may help us to understand their abnormal affective and cognitive functions clinically.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.