Abstract:The experience with deregulated electricity market has shown the increasingly important role of short-term electric load forecasting in the energy producing and scheduling. However, because of nonlinear, stochastic and nonstable characteristics associated with the electric load series, it is extremely difficult to precisely forecast the electric load. This paper aims to establish a novel ensemble model based on variational mode decomposition (VMD) and extreme learning machine (ELM) optimized by differential evolution (DE) algorithm for multi-step ahead electric load forecasting. The proposed model is novel in the sense that VMD is firstly applied to decompose the original electric load series into a set of components with different frequencies in order to effectively eliminate the stochastic fluctuation characteristic so as to improve the overall prediction accuracy. The proposed ensemble model is tested using two electric load series collected from New South Wales (NSW) and Queensland (QLD) in the Australian electricity market. The experimental results show that: (1) the data preprocessing by VMD can effectively decrease the stochastic fluctuation characteristics that existed in the electric load series, consequently improving the whole forecasting accuracy, and; (2) the proposed forecasting model performs better than all other benchmark models for both one-step and multi-step ahead electric load forecasting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.