This work reports that cationic micelles formed by cationic trimeric, tetrameric, and hexameric surfactants bearing amide moieties in spacers can efficiently kill Gram-negative E. coli with a very low minimum inhibitory concentration (1.70-0.93 μM), and do not cause obvious toxicity to mammalian cells at the concentrations used. With the increase of the oligomerization degree, the antibacterial activity of the oligomeric surfactants increases, i.e., hexameric surfactant > tetrameric surfactant > trimeric surfactant. Isothermal titration microcalorimetry, scanning electron microscopy, and zeta potential results reveal that the cationic micelles interact with the cell membrane of E. coli through two processes. First, the integrity of outer membrane of E. coli is disrupted by the electrostatic interaction of the cationic ammonium groups of the surfactants with anionic groups of E. coli, resulting in loss of the barrier function of the outer membrane. The inner membrane then is disintegrated by the hydrophobic interaction of the surfactant hydrocarbon chains with the hydrophobic domains of the inner membrane, leading to the cytoplast leakage. The formation of micelles of these cationic oligomeric surfactants at very low concentration enables more efficient interaction with bacterial cell membrane, which endows the oligomeric surfactants with high antibacterial activity.
Two star-like trimeric cationic surfactants with amide groups in spacers, tri(dodecyldimethylammonioacetoxy)diethyltriamine trichloride (DTAD) and tri(dodecyldimethylammonioacetoxy)tris(2-aminoethyl)amine trichloride (DDAD), have been synthesized, and the aggregation behavior of the surfactants in aqueous solution has been investigated by surface tension, electrical conductivity, isothermal titration microcalorimetry, dynamic light scattering, cryogenic transmission electron microscopy, and NMR techniques. Typically, both the surfactants form vesicles just above critical aggregation concentration (CAC), and then the vesicles transfer to micelles gradually with an increase of the surfactant concentration. It is approved that the conformation of the surfactant molecules changes in this transition process. Just above the CAC, the hydrophobic chains of the surfactant molecules pack more loosely because of the rigid spacer and intramolecular electrostatic repulsion in the three-charged headgroup. With the increase of the surfactant concentration, hydrophobic interaction becomes strong enough to pack the hydrophobic tails tightly and turn the molecular conformation into a pyramid-like shape, thus leading to the vesicle to micelle transition.
A star-shaped hexameric quaternary ammonium surfactant (PAHB), bearing six hydrophobic chains and six charged hydrophilic headgroups connected by an amide-type spacer group, was synthesized. The self-assembly behavior of the surfactant in aqueous solution was studied by surface tension, electrical conductivity, isothermal titration microcalorimetry, dynamic light scattering, cryogenic transmission electron microscopy, and NMR techniques. The results reveal that there are two critical aggregate concentrations during the process of aggregation, namely C(1) and C(2). The aggregate transitions are proved to be caused by the changes of the surfactant configuration through hydrophobic interaction among the hydrocarbon chains. Below C(1), PAHB may present a star-shaped molecular configuration due to intramolecular electrostatic repulsion among the charged headgroups, and large aggregates with network-like structure are observed. Between C(1) and C(2), the hydrophobic interaction among the hydrophobic chains may become stronger to make the hydrophobic chains of the PAHB molecules curve back and pack more closely, and then the network-like aggregates transfer to large spherical aggregates of ∼100 nm. Beyond C(2), the hydrophobic interaction may become strong enough to cause the PAHB molecular configuration to turn into a pyramid-like shape, resulting in the transition of the spherical large aggregates to spherical micelles of ∼10 nm. Interestingly, the PAHB displays high emulsification ability to linear fatty alkyls even at very low concentration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.