BackgroundTuberculosis (TB) is a major global public health problem. New treatment methods on TB are urgently demanded.MethodsNinety-six female BALB/c mice were challenged with 2×104 colony-forming units (CFUs) of MTB H37Rv through tail vein injection, then was treated with 10μg, 50μg, 100μg, and 200μg of Mycobacterium tuberculosis (MTB) ag85a/b chimeric DNA vaccine delivered by intramuscular injection (IM) and electroporation (EP), respectively. The immunotherapeutic effects were evaluated immunologically, bacteriologically, and pathologically.ResultsCompared with the phosphate-buffered saline (PBS) group, the CD4+IFN-γ+ T cells% in whole blood from 200 µg DNA IM group and four DNA EP groups increased significantly (P<0.05), CD8+IFN-γ+ T cells% (in 200 μg DNA EP group), CD4+IL-4+ T cells% (50 μg DNA IM group) and CD8+IL-4+ T cells% (50 μg and 100 μg DNA IM group, 100 μg and 200 μg DNA EP group) increased significantly only in a few DNA groups (P< 0.05). The CD4+CD25+ Treg cells% decreased significantly in all DNA vaccine groups (P<0.01). Except for the 10 μg DNA IM group, the lung and spleen colony-forming units (CFUs) of the other seven DNA immunization groups decreased significantly (P<0.001, P<0.01), especially the 100 μg DNA IM group and 50 μg DNA EP group significantly reduced the pulmonary bacterial loads and lung lesions than the other DNA groups.ConclusionsAn MTB ag85a/b chimeric DNA vaccine could induce Th1-type cellular immune reactions. DNA immunization by EP could improve the immunogenicity of the low-dose DNA vaccine, reduce DNA dose, and produce good immunotherapeutic effects on the mouse TB model, to provide the basis for the future human clinical trial of MTB ag85a/b chimeric DNA vaccine.
Background: Tuberculosis is a leading cause of death worldwide. BCG is an effective vaccine, but not widely used in many parts of the world due to a variety of issues. Mycobacterium vaccae (M. vaccae) is another vaccine used in human subjects to prevent tuberculosis. In the current study, we investigated the potential mechanisms of M. vaccae vaccination by determining differentially expressed genes in mice infected with M. tuberculosis before and after M. vaccae vaccination. Methods: Three days after exposure to M. tuberculosis H37Rv strain (5 × 10 5 CFU), adult BALB/c mice randomly received either M. vaccae vaccine (22.5 μg) or vehicle via intramuscular injection (n = 8). Booster immunization was conducted 14 and 28 days after the primary immunization. Differentially expressed genes were identified by microarray followed by standard bioinformatics analysis. Results: M. vaccae vaccination provided protection against M. tuberculosis infection (most prominent in the lungs). We identified 2326 upregulated and 2221 downregulated genes in vaccinated mice. These changes could be mapped to a total of 123 signaling pathways (68 upregulated and 55 downregulated). Further analysis pinpointed to the MyD88dependent TLR signaling pathway and PI3K-Akt signaling pathway as most likely to be functional. Conclusions: M. vaccae vaccine provided good protection in mice against M. tuberculosis infection, via a highly complex set of molecular changes. Our findings may provide clue to guide development of more effective vaccine against tuberculosis.
Background. The Traditional Chinese Medicine NiuBeiXiaoHe (NBXH) is a valid antituberculosis (TB) prescription from the experience of clinical practice. However, the mechanism of NBXH extracts’ immunotherapy has been poorly understood. Herein, the immunotherapeutic efficacy and the differentially expressed (DE) genes of NBXH extracts were evaluated and identified in BALB/c mice. Methods. The total RNA was extracted from peripheral blood mononuclear cells, and the DE genes were identified by gene chip. The enrichment and signaling pathway analyses were performed using Gene Ontology (GO) and KEGG database. Results. It was shown that the treatment of NBXH extracts (high dose) significantly reduced mycobacteria loads and histopathological lesions in mice infected by Mycobacterium tuberculosis and resulted in 3,454 DE upregulated genes and 3,594 downregulated DE genes. Furthermore, NBXH extracts killed mycobacteria by inhibiting the supply of necessary ingredients for their growth and proliferation. They restored the disordered immune microenvironments by up- or downregulating immune and inflammation-related pathways. Conclusions. Taken together, NBXH extracts not only efficiently decreased the mycobacteria loads but also balanced the immune disorders in mice. These new findings provide a fresh perspective for elucidating the immunotherapeutic mechanism of NBXH extracts and pointed out the direction for improving the treatment efficacy of NBXH extracts.
BackgroundThe diagnosis of bacterium-negative pulmonary tuberculosis (TB) and extra-pulmonary TB is challenging clinically. The detection of the anti-TB antibody has an important, auxiliary, clinical diagnostic value. Therefore, TB antibody detection kits should be screened and evaluated, and the reagents with the highest sensitivity and specificity should be chosen and used clinically.MethodsThe diagnostic performance of 7 commercially available TB antibody detection kits (kits A, B, C, D, E, F and G) based on the gold immunoassay detection of immunoglobulin (Ig) G or IgM antibodies were simultaneously evaluated and compared in 62 TB cases and 56 non-TB cases in a laboratory. A retrospective analysis including 2549 cases was carried out to assess the clinical diagnosis values of bacteriological examinations and TB antibody tests (kits B and H used in the clinic).ResultsThe sensitivities of TB antibody kits A, B, C, D, E, F and G in the sera from 62 TB patients were 50.0%, 83.9%, 38.7%, 9.7%, 48.4%, 69.4% and 79.0%, respectively; the sensitivities in the sera from 24 smear-negative TB patients were 29.2%, 79.2%, 29.2%, 12.5%, 29.2%, 54.2% and 79.2%, respectively; the specificities in the sera from 56 non-TB patients were 73.2%, 25.0%, 85.7%, 96.4%, 78.6%, 78.6% and 50.0%, respectively. Of the 2549 clinically diagnosed cases, there were 1752 pulmonary TB cases, 505 extra-pulmonary TB cases, 87 old pulmonary TB cases and 205 non-TB cases. The positive results for smear, culture, TB antibody kit B and kit H in pulmonary TB cases were 39.8% (543/1365), 48.6% (372/765), 45.8% (802/1752) and 25.2% (442/1752), respectively; the results in extra-pulmonary TB cases were 3.4% (6/178), 5.8% (4/69), 35.4% (179/505), and 11.3% (57/505), respectively; the results in old pulmonary TB cases were 0% (0/64), 0% (0/30), 32.2% (28/87), and 9.2% (8/87), respectively; and the results in non-TB cases were 0% (0/121), 0% (0/56), 21.5% (44/205), and 2.4% (5/205), respectively. Of 624 smear-positive and/or culture-positive pulmonary TB cases, the sensitivities of antibody test kits B and H were 53.0% and 36.4%, respectively. Of 901 smear-negative and/or culture-negative pulmonary TB cases, the sensitivities of antibody test kits B and H were 42.5% and 19.0%, respectively. The positive rate of antibody detection in the bacterium-positive pulmonary TB cases was significantly higher than that in the bacterium-negative pulmonary TB cases (P < 0.05).ConclusionsThe colloidal gold-labeled TB antibody IgG detection assay is a simple, rapid and economical method that provides a better clinical auxiliary diagnosis value on TB, especially in smear-negative pulmonary TB and extra-pulmonary TB. The production, quality control, screening and evaluation of antibody detection kits are very important for its clinical application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.