In this Letter, we demonstrate theoretically a full-color hologram using spatial multiplexing of dielectric metasurface for three primary colors, capable of reconstructing arbitrary RGB images. The discrete phase maps for the red, green, and blue components of the target image are extracted through a classical Gerchberg-Saxton algorithm and reside in the corresponding subcells of each pixel. Silicon nanobars supporting narrow spectral response at the wavelengths of the three primary colors are employed as the basic meta-atoms to imprint the Pancharatnam-Berry phase while maintaining minimum crosstalk between different colors. The reconstructed holographic images agree well with the target images making it promising for colorful display.
Objectives The correlations between long non‐coding RNAs (lncRNAs) and diverse mammal diseases have been clarified by many researches, but the cognition about bovine mastitis‐related lncRNAs remains limited. This study aimed to investigate the potential role of lncRNA X‐inactive specific transcript (XIST) in the inflammatory response of bovine mammary epithelial cells. Materials and methods Two inflammatory bovine mammary alveolar cell‐T (MAC‐T) models were established by infecting the cells with Escherichia coli (E. coli) and Staphylococcus aureus ( S. aureus ). The expressions of pro‐inflammatory cytokines were measured, and the proliferation, viability and apoptosis of the inflammatory cells were evaluated after XIST was knocked down by an siRNA. The relationship among XIST, NF‐κB pathway and NOD‐like receptor protein 3 (NLRP3) inflammasome was investigated using an inhibitor of NF‐κB signal pathway. Results The expression of XIST was abnormally increased in bovine mastitic tissues and inflammatory MAC‐T cells. Silencing of XIST significantly increased the expression of E. coli or S. aureus ‐induced pro‐inflammatory cytokines. Additionally, knockdown of XIST could inhibit cell proliferation, suppress cell viability and promote cell apoptosis under inflammatory conditions. Furthermore, XIST inhibited E. coli or S. aureus ‐induced NF‐κB phosphorylation and the production of NLRP3 inflammasome. Conclusions The expression of XIST was promoted by activated NF‐κB pathway and, in turn, XIST generated a negative feedback loop to regulate NF‐κB/NLRP3 inflammasome pathway for mediating the process of inflammation.
For many years, investigators have sought after high-resolution fluorescence imaging in centimeter-deep tissue because many interesting in vivo phenomena—such as the presence of immune system cells, tumor angiogenesis, and metastasis—may be located deep in tissue. Previously, we developed a new imaging technique to achieve high spatial resolution in sub-centimeter deep tissue phantoms named continuous-wave ultrasound-switchable fluorescence (CW-USF). The principle is to use a focused ultrasound wave to externally and locally switch on and off the fluorophore emission from a small volume (close to ultrasound focal volume). By making improvements in three aspects of this technique: excellent near-infrared USF contrast agents, a sensitive frequency-domain USF imaging system, and an effective signal processing algorithm, for the first time this study has achieved high spatial resolution (~ 900 μm) in 3-centimeter-deep tissue phantoms with high signal-to-noise ratio (SNR) and high sensitivity (3.4 picomoles of fluorophore in a volume of 68 nanoliters can be detected). We have achieved these results in both tissue-mimic phantoms and porcine muscle tissues. We have also demonstrated multi-color USF to image and distinguish two fluorophores with different wavelengths, which might be very useful for simultaneously imaging of multiple targets and observing their interactions in the future. This work has opened the door for future studies of high-resolution centimeter-deep tissue fluorescence imaging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.