A better understanding on the associations between road density (RD), urban forest structural-taxonomic attributes, and landscape metrics is vital for forest ecological service evaluations and suitable management in sprawling urban areas with increasing road networks. We chose Harbin, a fast growing provincial capital city in northeast China, as a case study to address this issue. We utilized ArcGIS software (Esri, version 10.0; Redlands, CA, USA) and FRAGSTATS (V4.2.589) to digitize GF-1 images (Gaofen No.1 remote sensing images) to acquire road net characteristic information and landscape metrics of urban forests in Harbin. Together with forest structural-taxonomic attributes from a stratified random sampling survey, statistical methods such as an analysis of variance, a regression analysis, and a redundancy analysis were used to determine the road-dependent differences and to decouple the associations between them. The results indicated that road area percentages, road length/imperious surface area (ISA) ratios, road area/ISA ratios, and road cross-points sharply increased from low to heavy RD areas. This road intensification was strongly associated with increased urban forest area, patch density, and diverse patch shapes; smaller tree sizes, lower tree densities, and diverse tree species compositions were generally observed. Redundancy-based variation partitioning showed that part of the variations in structural-taxonomic attributes of forests could be explained by road intensity characteristics. In low RD (0–1.5 km/km2) regions, the road characteristics significantly affected forest characteristics (Shannon Wiener diversity index, species richness, and evenness index); however, such associations weakened with increasing forest landscape-related associations in medium to heavy RD (1.5–6 km/km2) regions. Our findings highlighted that road development is strongly associated with forest characteristics in Harbin city, and RD-dependent forest landscape regulating management could favor the maximization of forest ecological services that are related to structural and species identities.
As one of the world’s largest ecological rehabilitation programs, the three-north (Northern China, Northeastern China, and Northwestern China) shelterbelts program in China were not well evaluated on its effects on multiple soil properties. This paper aims to quantify this. Seven hundred twenty soils from paired plots of farmlands and neighbor shelterbelts were sampled from six regions of Songnen Plain in northeastern China. Multivariate analysis of variance and regression analysis were used to detect the impacts of shelterbelt plantations. For the overall 1 m soil profiles, shelterbelt plantations had a 4.3% and 7.4% decreases in soil bulk density and soil moisture (p = 0.000), a 4.8% increase in soil porosity (p = 0.003). It also evidently recovered soil fertility with a 40% increase in total P, a 4.4% increase in total K, and a 15.1% increase in available K (p < 0.05). However, without overall changes were in SOC and N (p > 0.05). Compared with farmland, shelterbelt plantations produced a 7.8% SOC increase in 20–40 cm soil and much more minor changes in surface soil (0–20 cm). Compared with the younger plantation, mature shelterbelts tended to sequestrate more SOC in soils (from a 0.11% decrease to a 3.31% increase) and recover total K from a 2.24% decline to a 16.5% increase. Correlation analysis manifested that there is a significant relationship between SOC sequestration and the changes in bulk density, porosity, soil moisture, pH, EC, total N, total P, and alkaline hydrolyzed N. In contrast, the strongest relationship was observed between total N and SOC (r > 0.50, p < 0.001). The increase in total N was accompanied by 1.01–1.67-fold higher SOC sequestration in deep soils >20 cm in poplar forests. Our results highlight that the over-40-year shelterbelts afforestation on farmland in northeastern China could strongly affect soil physics, soil water, and nutrient of P and K. The effects on SOC sequestration were dependent on soil depths, growth stages, and regions. Our data support the precise soil evaluation of agroforestry projects in the black soil region in the high-latitude northern hemisphere.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.