This paper studied and realized a flexible nanogenerator based on P(VDF-TrFE) nanofibers and PDMS/MWCNT thin composite membrane, which worked under triboelectric and piezoelectric hybrid mechanisms. The P(VDF-TrFE) nanofibers as a piezoelectric functional layer and a triboelectric friction layer are formed by electrospinning process. In order to improve the performance of triboelectric nanogenerator, the multiwall carbon nanotubes (MWCNT) is doped into PDMS patterned films as the other flexible friction layer to increase the initial capacitance. The flexible nanogenerator is fabricated by low cost MEMS processes. Its output performance is characterized in detail and structural optimization is performed. The device’s output peak-peak voltage, power and power density under triboelectric mechanism are 25 V, 98.56 μW and 1.98 mW/cm3 under the pressure force of 5 N, respectively. The output peak-peak voltage, power and power density under piezoelectric working principle are 2.5 V, 9.74 μW, and 0.689 mW/cm3 under the same condition, respectively. We believe that the proposed flexible, biocompatible, lightweight, low cost nanogenerator will supply effective power energy sustainably for wearable devices in practical applications.
Recently, triboelectric energy nanogenerators (TENGs) have been paid the most attention by many researchers to convert mechanical energy into electrical energy. TENGs usually have a simple structure and a high output voltage. However, their high internal resistance results in low output power. In this work, we propose a flexible triboelectric energy nanogenerator with the double-side tribological layers of polydimethlysiloxane (PDMS) and PDMS/multiwall carbon nanotube (MWCNT). MWCNTs with different concentrations have been doped into PDMS to tune the internal resistance of triboelectric nanogenerator and optimize its output power. The dimension of the fabricated prototype is ~3.6 cm3. Three-axial force sensor is used to monitor the applied vertical forces on the device under vertical contact-separation working mode. The Prototype with 10 wt% MWCNT (Prototype I) produces higher output voltage than one with 2 wt% MWCNT (Prototype II) due to its higher dielectric parameter measured by LRC impedance analyzer. The triboelectric output voltages of Prototype I and Prototype II are 30 V and 25 V under the vertical force of 3.0 N, respectively. Their maximum triboelectric output powers are ~130 μW at 6 MΩ and ~120 μW at 8.6 MΩ under vertical forces, respectively.
BackgroundThere was no consistent recognition of the association between high or low body mass index (BMI) and health related quality of life (HRQL). The aim of this research was to study the association between BMI and HRQL in Chinese adults, and to further explore the stability of that association in the subgroup analysis stratified by status of chronic conditions.MethodsA total of 21,218 adults aged 18 and older were classified as underweight, normal weight, overweight, class I obese, and class II obese based on their BMI. HRQL was measured by the SF-36 Health Survey. The independent impact of each BMI category on HRQL was examined through standard least squares regression by comparing the difference of SF-36 scores and the minimum clinically important differences (MCID), which was defined as 3 points.ResultsCompared to the normal weight, the class I obese was significantly associated with better HRQL scores in the mental component summary (MCS) (75.1 vs. 73.4, P<0.001). The underweight had the lowest score in both the physical components summary (PCS) (75.4 vs. 77.5, P<0.001) and mental components summary (MCS) (71.8 vs. 73.4, P<0.001). For the MCID, the HRQL score was reduced by more than 3 points in the physical functioning for the class II obese (D=-3.43) and the general health for the underweight (D=-3.71). Stratified analyses showed a similar result in the health subjects and chronic conditions, and it was significant in the chronic conditions.ConclusionsThe class I obese showed the best HRQL, especially in the mental domain. The worst HRQL was found in the underweight. The class II obese reduced HRQL in the physical functioning only. “Obesity paradox” was more obvious in the participants with chronic conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.