Accumulating evidence suggests that aerobic glycolysis is important for colorectal cancer (CRC) development. However, the underlying mechanisms have yet to be elucidated. B7-H3, an immunoregulatory protein, is broadly overexpressed by multiple tumor types and plays a vital role in tumor progression. In this study, we found that overexpression of B7-H3 effectively increased the rate of glucose consumption and lactate production, whereas knockdown of B7-H3 had the opposite effect. Furthermore, we showed that B7-H3 increased glucose consumption and lactate production by promoting hexokinase 2 (HK2) expression in CRC cells, and we also found that HK2 was a key mediator of B7-H3-induced CRC chemoresistance. Depletion of HK2 expression or treating cells with HK2 inhibitors could reverse the B7-H3-induced increase in aerobic glycolysis and B7-H3-endowed chemoresistance of cancer cells. Moreover, we verified a positive correlation between the expression of B7-H3 and HK2 in tumor tissues of CRC patients. Collectively, our findings suggest that B7-H3 may be a novel regulator of glucose metabolism and chemoresistance via controlling HK2 expression in CRC cells, a result that could help develop B7-H3 as a promising therapeutic target for CRC treatment.
Tumor angiogenesis is a hallmark of cancer and is involved in the tumorigenesis of solid tumors. B7-H3, an immune checkpoint molecule, plays critical roles in proliferation, metastasis and tumorigenesis in diverse tumors; however, little is known about the biological functions and molecular mechanism underlying B7-H3 in regulating colorectal cancer (CRC) angiogenesis. In this study, we first demonstrated that the expression of B7-H3 was significantly upregulated and was positively associated with platelet endothelial cell adhesion molecule-1 (CD31) level in tissue samples from patients with CRC. In addition, a series of in vitro and in vivo experiments showed that conditioned medium from B7-H3 knockdown CRC cells significantly inhibited the migration, invasion, and tube formation of human umbilical vein endothelial cells (HUVECs), whereas overexpression of B7-H3 had the opposite effect. Furthermore, B7-H3 promoted tumor angiogenesis by upregulating VEGFA expression. Recombinant VEGFA abolished the inhibitory effects of conditioned medium from shB7-H3 CRC cells on HUVEC angiogenesis, while VEGFA siRNA or a VEGFA-neutralizing antibody reversed the effects of conditioned medium from B7-H3-overexpressing CRC cells on HUVEC angiogenesis. Moreover, we verified that B7-H3 upregulated VEGFA expression and angiogenesis by activating the NF-κB pathway. Collectively, our findings identify the B7-H3/NF-κB/VEGFA axis in promoting CRC angiogenesis, which serves as a promising approach for CRC treatment. Facts B7-H3 is significantly upregulated and is positively associated with CD31 level in colorectal cancer (CRC) tissue samples. B7-H3 modulates tumor angiogenesis by upregulating vascular endothelial growth factor A (VEGFA) expression in CRC cells. VEGFA is critical for B7-H3-mediated CRC angiogenesis both in vitro and in vivo. B7-H3 promotes VEGFA expression and angiogenesis by activating NF-κB signaling.
Fluid shear stress plays an important role in bone remodeling, however, the mechanism of mechanotransduction in bone tissue remains unclear. Recently, ERK5 has been found to be involved in multiple cellular processes. This study was designed to investigate the potential involvement of ERK5 in the proliferative response of osteoblastic cells to cyclic fluid shear stress. We reported here that cyclic fluid shear stress promoted ERK5 phosphorylation in MC3T3-E1 cells. Inhibition of ERK5 phosphorylation attenuated the increased expression of AP-1 and cyclin D1 and cell proliferation induced by cyclic fluid flow, but promoted p-16 expression. Further more, we found that cyclic fluid shear stress was a better stimuli for ERK5 activation and cyclin D1 expression compared with continuous fluid shear stress. Moreover, the pharmacological ERK5 inhibitor, BIX02189, which inhibited ERK5 phosphorylation in a time-dependent manner and the suppression lasted for at least 4 h. Taken together, we demonstrate that ERK5/AP-1/cyclin D1 pathway is involved in the mechanism of osteoblasts proliferation induced by cyclic fluid shear stress, which is superior in promoting cellular proliferation compared with continuous fluid shear stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.