In this paper, the effect of iron phase content on the calcination and properties of clinker and barium calcium sulfoaluminate cement was studied. The compressive strength of the samples was tested and combined with an XRD and SEM-EDS analysis, and the microstructure and composition of the barium calcium sulfoaluminate clinker and hydrated samples were characterized. The results showed that the oval-shaped particles were C2S minerals, and the hexagonal plate-shaped or rhombohedral dodecahedral particles were C2.75B1.25A3S¯. The Ba element was mainly distributed in the barium calcium sulfoaluminate region, and some of it was dissolved in C2S; the Fe element was distributed between C2.75B1.25A3S¯ and C2S crystal grains in the form of an iron phase solid solution, which acted as a solvent. When the iron phase composition was C4AF and the iron phase content was 5%, the early hydration and later strength were better, and the compressive strength after curing for 1, 3 and 28 days was 73.2 MPa, 97.9 MPa and 106.9 MPa, respectively. A proper amount of the iron phase can reduce the eutectic point of the sintered mature material system, increase the amount of liquid phase, reduce the viscosity of the liquid phase, effectively accelerate the migration of mineral ions and promote the formation and growth of minerals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.