Methacrylated gelatin (GelMA) has been widely used as a tissue-engineered scaffold material, but only low-concentration GelMA hydrogels were found to be promising cell-laden bioinks with excellent cell viability. In this work, we reported a strategy for precise deposition of 5% (w/v) cell-laden GelMA bioinks into controlled microarchitectures with high cell viability using extrusion-based three-dimensional (3D) bioprinting. By adding gelatin into GelMA bioinks, a two-step cross-linking combining the rapid and reversible thermo-cross-linking of gelatin with irreversible photo-cross-linking of GelMA was achieved. The GelMA/gelatin bioinks showed significant advantages in processability because the tunable rheology and the rapid thermo-cross-linking of bioinks improved the shape fidelity after bioprinting. Here, the rheology, mechanical properties, and swelling of GelMA/gelatin bioinks with different concentration ratios were carefully characterized to obtain the optimized bioprinting setup. We successfully printed the 5% (w/v) GelMA with 8% (w/v) gelatin into 3D structures, which had the similar geometrical resolution as that of the structures printed by 30% (w/v) GelMA bioinks. Moreover, the cell viability of 5/8% (w/v) GelMA/gelatin bioinks was demonstrated by in vitro culture and cell printing of bone marrow stem cells (BMSCs). Larger BMSC spreading area was found on 5/8% (w/v) GelMA/gelatin scaffolds, and the BMSC viability after the printing of 5/8% (w/v) GelMA/gelatin cell-laden bioinks was more than 90%, which was very close to the viability of printing pure 5% (w/v) GelMA cell-laden bioinks. Therefore, this printing strategy of GelMA/gelatin bioinks may extensively extend the applications of GelMA hydrogels for tissue engineering, organ printing, or drug delivery.
This paper introduces a novel method for characterizing the oxygen vacancy associates in hydrogenationmodified TiO 2 by using a positron annihilation lifetime spectroscopy (PALS). It was found that a huge number of small neutral Ti 3+ −oxygen vacancy associates, some larger size vacancy clusters, and a few voids of vacancy associates were introduced into hydrogenated TiO 2 . The defects blurred the atomic lattice high-resolution transmission electron microscopy (HRTEM) images and brought about the emergence of new Raman vibration. X-ray photoelectron spectroscopy (XPS) measurement indicated that the concentration of oxygen vacancies was 3% in the TiO 2 lattice. The photoluminescence (PL) spectroscopy, photocurrent, and degradation of methylene blue indicated that the oxygen vacancy associates introduced by hydrogenation retarded the charge recombination and therefore improved the photocatalytic activity remarkably.
Understanding the lattice dynamics and phonon transport from the perspective of chemical bonds is essential for improving and finding high‐efficiency thermoelectric materials and for many applications. Here, the coexistence of global and local weak chemical bonds is elucidated as the origin of the intrinsically low lattice thermal conductivity of non‐caged structure Nowotny–Juza compound, α‐MgAgSb, which is identified as a new type of promising thermoelectric material in the temperature range of 300–550 K. The global weak bonds of the compound lead to a low sound velocity. The unique three‐centered MgAgSb bonds in α‐MgAgSb vibrate locally and induce low‐frequency optical phonons, resulting in “rattling‐like” thermal damping to further reduce the lattice thermal conductivity. The hierarchical chemical bonds originate from the low valence electron count of α‐MgAgSb, with the feature shared by Nowotny–Juza compounds. Low lattice thermal conductivities are therefore highly possible in this series of compounds, which is verified by phonon and bulk modulus calculations on some of the compositions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.