Titanium dioxide (TiO 2) as an important semiconductor is widely used in the fields of solar cell, solar thermal collectors, and photocatalysis, but the visible-light power harvest remains insufficient due to the little effective visible-light absorption and many carrier-recombination centers originating from the wide band gap structure. Herein, conductive black titania (BT) nanomaterials with crystalline-TiO 2-core/amorphous-TiO 2−x-shell structure prepared through two-zone Al-reduction route are found efficient in photocatalyzing the degradation of organic pollutants to environmentally friendly products under full solar and even visible light irradiation. The unique core-shell structure and numerous surface oxygen vacancies or Ti 3+ species in the amorphous layer accompanying prominent physicochemical properties of narrow band gap, high carrier concentration, high electron mobility, and excellent separation and transportation of photoinduced e − −h + pairs result in exceptional photocatalytic efficiency. The optimized BT-500 (pristine TiO 2 treated at 500 °C during two-zone Al-reduction process) catalyst achieves superior photocatalytic degradation rates for toluene and ethyl acetate as well as an excellent photostability with high degradation efficiency of 93% for the 6th reuse.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.