The present study was conducted to investigate the effects of dietary yeast culture (YC) supplementation on growth performance, nutrient digestibility, blood metabolites, and immune functions in geese. One-day-old Sichuan white geese (n = 300) were randomly divided into five groups containing 0 (control), 0.5%, 1.0%, 2.0%, and 4.0% of YC in the diet for 70 days. In general, the dietary supplementation of YC significantly increased the average daily gain and feed conversion ratio (p < 0.05) in which the 1.0% or 2.0% levels were better and significantly reduced the average daily feed intake at the 2.0% level (p < 0.05). YC supplementation increased digestibility of P (quadratic, p = 0.01) and gross energy (quadratic, p = 0.04) from days 23 to 27 and crude protein from days 23 to 27 and days 64 to 68 (quadratic, p ≤ 0.05), with the 2.0% level being the most effective. Serum metabolites were significantly affected by dietary YC (p < 0.05). Supplemental YC increased IL-2 on day 28 (linear, p = 0.01; quadratic, p = 0.04) and lysozyme on day 70 (quadratic, p = 0.04) and decreased complement C4 on day 70 (linear, p = 0.05). Interferon-γ, interleukin-2, and tumor necrosis factor-α genes were mostly up-regulated after YC supplementation, and interferon-γ and interleukin-2 gene expression levels were significantly increased at the 2.0% level (p < 0.05). Taken together, dietary YC supplementation improved growth performance and affected nutrient digestibility, serum metabolites, and immune function in geese, which was optimized at the 2% YC level in the present study.
It is well accepted that the gut microbiota of breast-fed (BF) and formula-fed (FF) infants are significantly different. However, there is still a limited number of studies comparing the gut microbiota of BF and FF piglets, despite increasing numbers of FF piglets in the modern pig industry. The present study identified the differences in gut microbiota composition between BF- and FF-weaned Rongchang piglets at 30 days old, using pair-end sequencing on the Illumina HiSeq 2500 platform. The BF piglets had lower microbiota diversities than FF piglets (p < 0.05), and the community structures were well clustered as a result of each feeding pattern. Firmicutes and Bacteroidetes represented the most dominant phyla, and Ruminococcus, Prevotella, and Gemmiger were prominent genera in all piglets. Ruminococcus, Prevotella, Oscillospira, Eubacterium, Gemmiger, Dorea, and Lactobacillus populations were significantly higher, while Treponema and Coprococcus were significantly lower in BF piglets compared to FF piglets (p < 0.05). The metabolism pathways in the BF piglets were significantly different from FF piglets, which included carbohydrate and amino acid metabolism (p < 0.05). In addition, the top 10 abundance of microbiota were more or less significantly associated with the two phenotypes (p < 0.05). Collectively, these findings provide probable explanations for the importance of BF in neonates and support a theoretical basis for feeding regimes in indigenous Chinese piglets.
The objective of this experiment is to evaluate the effects of yeast culture (YC) supplementation on blood characteristics, body size, carcass characteristics, organ weights, intestinal morphology, and enzyme activities. Five groups of geese were randomly assigned to five dietary treatments: the basal diet (control) and basal diets plus 0.5%, 1.0%, 2.0%, or 4.0% YC. Compared with the controls, YC supplementation at 0.5% and 1.0% increased the serum total protein (TP), albumin (ALB), and globulin (GLO) and decreased the uric acid and creatine kinase (CK) contents (p < 0.05). YC supplementation at 2.0% and 4.0% increased the CK, growth hormone, catalase and glutathione reductase contents, and relative proventriculus weights, and decreased the TP, ALB, and GLO contents, relative liver, gizzard, jejunum, ileum, and thymus weights (p < 0.05). YC supplementation at 2.0% improved fossil bone length, breast muscle percentage, jejunal villus height, ileal and jejunal villus height/crypt depth ratios, pepsin, lipase, amylase and pancreatic trypsin activities, and decreased abdominal fat percentage (p < 0.05). Furthermore, YC inclusion increased the body slope length (linear, p = 0.002; quadratic, p = 0.02), breast width (quadratic, p = 0.02), ileal (linear, p = 0.04; quadratic, p = 0.01) and duodenal villus height (cubic, p = 0.04), and decreased the relative gizzard (quadratic, p = 0.04) and thymus (linear, p = 0.002; quadratic, p = 0.02; cubic, p = 0.02) weights, liver (linear, p = 0.002; quadratic, p = 0.02), and serum (linear, p = 0.006; quadratic, p = 0.03) malondialdehyde contents, and jejunal crypt depth (quadratic, p = 0.03). The findings indicated that the YC supplementation had a positive effect on the growth and development of geese, with 2% YC being the most effective.
A study was conducted to evaluate the effect of yeast peptide supplementation on growth performance, nutrient digestibility, and blood metabolites in geese. One-day-old Sichuan white geese (n = 300, 95.16 ± 1.98 g) were randomly assigned to five dietary treatment groups containing either 0 (control), 100, 200, 300, or 400 mg/kg commercial yeast peptide product. Compared with the control, dietary supplemental yeast peptide at 200 mg/kg substantially improved feed conversion ratio, body slope length, half-eviscerated percentage, and the apparent digestibility of phosphorus. With the increase in dietary yeast peptide, breast width, carcass percentage, serum triglyceride and high-density lipoprotein increased linearly. The average daily gain, pelvis width, half-diving depth, low density lipoprotein, and digestibility of gross energy exhibited quadratic responses with the increase in dietary yeast peptide, with the 200 mg/kg or 300 mg/kg feeding level being the most effective. It can be concluded that dietary supplementation of yeast peptides improves growth performance and affects nutrient digestibility and blood metabolites, which were optimized at 200 mg/kg or 300 mg/kg of yeast peptide in the present study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.