Correspondence to: hjgao@iphy.ac.cn, sxdu@iphy.ac.cn †These authors contributed equally to this work.The construction of atomically-precise carbon nanostructures holds promise for developing novel materials for scientific study and nanotechnology applications. Here we show that graphene origami is an efficient way to convert graphene into atomically-precise, complex, and novel nanostructures. By scanning-tunneling-microscope manipulation at low temperature, we repeatedly fold and unfold graphene nanoislands (GNIs) along arbitrarily chosen direction. A bilayer graphene stack featuring a tunable twist angle and a tubular edge connection between the layers are formed. Folding single-crystal GNIs creates tubular edges with specified chirality and onedimensional electronic features similar to those of carbon nanotubes, while folding bicrystal GNIs creates well-defined intramolecular junctions. Both origami structural models and electronic band structures were computed to complement analysis of the
Silicon-based two-dimensional (2D) materials are uniquely suited for integration in Si-based electronics. Silicene, an analogue of graphene, was recently fabricated on several substrates and was used to make a field-effect transistor. Here, we report that when Ru(0001) is used as a substrate, a range of distinct monolayer silicon structures forms, evolving toward silicene with increasing Si coverage. Low Si coverage produces a herringbone structure, a hitherto undiscovered 2D phase of silicon. With increasing Si coverage, herringbone elbows evolve into silicene-like honeycomb stripes under tension, resulting in a herringbone-honeycomb 2D superlattice. At even higher coverage, the honeycomb stripes widen and merge coherently to form silicene in registry with the substrate. Scanning tunneling microscopy (STM) was used to image the structures. The structural stability and electronic properties of the Si 2D structures, the interaction between the Si 2D structures and the Ru substrate, and the evolution of the distinct monolayer Si structures were elucidated by density functional theory (DFT) calculations. This work paves the way for further investigations of monolayer Si structures, the corresponding growth mechanisms, and possible functionalization by impurities.
We report on intercalation of seven kinds of metals—Pt, Pd, Ni, Co, Au, In, and Ce—at the interface between an epitaxially grown graphene layer and a Ru(0001) substrate. Atomic resolution scanning tunneling microscopy images of perfect graphene lattice are obtained on top of these intercalated metals, showing that the high quality of the original graphene is, in the end, undisturbed by the intercalation. A model based theoretical calculation is proposed for the intercalation mechanism: metal atom-aided defect formation and self-healing of C–C bonds at high temperature. These intercalated materials include noble metals, magnetic metals, a IIIA group metal, and a rare earth metal, which indicates that intercalation through epitaxial graphene on Ru(0001) is a universal approach for metals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.