Phase unwrapping (PU) represents a key step in the reconstruction of digital elevation models (DEMs) and the monitoring of surface deformation from interferometric synthetic aperture radar (InSAR) data. Compared with single-baseline (SB) PU, multi-baseline (MB) PU can resolve the phase discontinuities caused by noise and phase layover induced by terrain undulations. However, the MB PU performance is limited primarily by its poor robustness to measurement bias and noise. To address this problem, we propose a refined 2-D MB PU method based on the two-stage programming approach (TSPA). The proposed method uses the unscented Kalman filter (UKF) to improve the performance of the second stage of the original TSPA method. Specifically, the proposed method maintains the first stage of the TSPA to estimate the range and azimuth gradients between neighbouring pixels. Then, median filtering is slightly used to reduce the effects of the noise gradients on the estimated phase gradients. Finally, the UKF model is used to unwrap the interferometric phases using an efficient quality-guided strategy based on heap-sort. This paper is the first to integrate the UKF into the TSPA framework. The proposed method is validated using bistatic and monostatic MB InSAR datasets, and the experimental results show that the proposed method is effective for MB PU problems.
Phase unwrapping (PU) is a key step in the reconstruction of digital elevation models (DEMs) and the monitoring of surface deformation from interferometric synthetic aperture radar (SAR, InSAR) data. In this paper, an improved PU method that combines an amended matrix pencil model, an adaptive unscented kalman filter (AUKF), an efficient quality-guided strategy based on heapsort, and a circular median filter is proposed. PU theory and the existing UKFPU method are covered. Then, the improved method is presented with emphasis on the AUKF and the circular median filter. AUKF has been well used in other fields, but it is for the first time applied to interferometric images PU, to the best of our knowledge. First, the amended matrix pencil model is used to estimate the phase gradient. Then, an AUKF model is used to unwrap the interferometric phase based on an efficient quality-guided strategy based on heapsort. Finally, the key results are obtained by filtering the results using a circular median. The proposed method is compared with the minimum cost network flow (MCF), statistical cost network flow (SNAPHU), regularized phase tracking technique (RPTPU), and UKFPU methods using two sets of simulated data and two sets of experimental GF-3 SAR data. The improved method is shown to yield the greatest accuracy in the interferometric phase maps compared to the methods considered in this paper. Furthermore, the improved method is shown to be the most robust to noise and is thus most suitable for PU of GF-3 SAR data in high-noise and low-coherence regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.