We propose a two-dimensional crystal which possesses low indirect band gaps of 0.55 eV (monolayer) and 0.43 eV (bilayer) and high carrier mobilities similar to those of phosphorene: GeP3. GeP3 has a stable three-dimensional layered bulk counterpart which is metallic and is known from experiment since 1970. GeP3 monolayer has a calculated cleavage energy of 1.14 J m -2 , which suggests exfoliation of bulk material as viable means for the preparation of mono-and few-layer materials. The material shows strong interlayer quantum confinement effects, resulting in a band gap reduction from mono-to bilayer, and then to a semiconductor-metal transition between bi-and triple layer. Under biaxial strain, the indirect band gap can be turned into a direct one. Pronounced light absorption in the spectral range from ~600 to 1400 nm is predicted for monolayer and bilayer and promises applications in photovoltaics.
Gauss's law dictates that the net electric field inside a conductor in electrostatic equilibrium is zero by effective charge screening; free carriers within a metal eliminate internal dipoles that may arise owing to asymmetric charge distributions. Quantum physics supports this view, demonstrating that delocalized electrons make a static macroscopic polarization, an ill-defined quantity in metals--it is exceedingly unusual to find a polar metal that exhibits long-range ordered dipoles owing to cooperative atomic displacements aligned from dipolar interactions as in insulating phases. Here we describe the quantum mechanical design and experimental realization of room-temperature polar metals in thin-film ANiO3 perovskite nickelates using a strategy based on atomic-scale control of inversion-preserving (centric) displacements. We predict with ab initio calculations that cooperative polar A cation displacements are geometrically stabilized with a non-equilibrium amplitude and tilt pattern of the corner-connected NiO6 octahedral--the structural signatures of perovskites--owing to geometric constraints imposed by the underlying substrate. Heteroepitaxial thin-films grown on LaAlO3 (111) substrates fulfil the design principles. We achieve both a conducting polar monoclinic oxide that is inaccessible in compositionally identical films grown on (001) substrates, and observe a hidden, previously unreported, non-equilibrium structure in thin-film geometries. We expect that the geometric stabilization approach will provide novel avenues for realizing new multifunctional materials with unusual coexisting properties.
2D PtSSe for photocatalytic water splitting under visible or infrared light.
Layered materials exhibit intriguing electronic characteristics and the search for new types of two-dimensional (2D) structures is of importance for future device fabrication. Using state-of-art first principle calculations, we identify and characterize the structural and electronic properties of two 2D layered arsenic materials, namely, arsenic and its alloy AsSb. The stable 2D structural configuration of arsenic is confirmed to be the low-buckled two-dimensional hexagonal structure by phonon and binding energy calculations. The monolayer exhibits indirect semiconducting properties with gap around 1.5 eV (corrected to 2.2 eV by hybrid function), which can be modulated into a direct semiconductor within a small amount of tensile strain. These semiconducting properties are preserved when cutting into 1D nanoribbons, but the band gap is edge dependent. It is interesting to find that an indirect to direct gap transition can be achieved under strain modulation of the armchair ribbon. Essentially the same phenomena can be found in layered AsSb, except a weak Rashba induced band splitting is present in AsSb due to the nonsymmetric structure and spin orbit coupling. When an additional layer is added on the top, a semiconductor−metal transition will occur. The findings here broaden the family of 2D materials beyond graphene and transition metal dichalcogenides and provide useful information for experimental fabrication of new layered materials with possible application in optoelectronics. ■ INTRODUCTIONOwing to their remarkable properties, 1,2 in recent years graphene-like 2D materials have attracted much research attention as emerging materials for nanoelectronics. As exemplified by recently synthesized graphene, 3,4 silicene, 5−7 boron-nitride nanosheets, 8−10 transition-metal dichalcogenides (TMDs), 11 and black phosphorus, 12,13 these materials are theoretically predicted and experimentally confirmed to possess novel properties which are different from or even better than those of their bulk counterparts. These 2D layered materials can exhibit versatile electronic properties, including metallic, semiconducting, superconducting, and even topological insulator 14 properties with extremely high mobility. With many promising applications in nanoelectronics and optoelectronics such as field-effect transistors (FETs), optoelectronics devices, photovoltaic solar cells, valley electronics, and spintronics applications, 11,15,16 they are considered to represent a relatively new and exciting area for nanotechnology. In this context, both the fundamental scientific importance and the promise of practical applications makes the exploration of new layered materials with novel properties a vigorous field of research in condensed matter physics and materials research.The 2D layered materials with single elemental constitution that have currently been synthesized/fabricated are mainly located in the right part of periodic table, namely, groups IV and V. For example, the commonly studied graphene, 3 silicene, germanium, 17 and tin fi...
One of the major obstacles to a wide application range of the quantum spin Hall (QSH) effect is the lack of suitable QSH insulators with a large bulk gap. By means of first-principles calculations including relativistic effects, we predict that methyl-functionalized bismuth, antimony, and lead bilayers (Me-Bi, Me-Sb, and Me-Pb) are 2D topological insulators (TIs) with protected Dirac type topological helical edge states, and thus suitable QSH systems. In addition to the explicitly obtained topological edge states, the nontrivial topological characteristic of these systems is confirmed by the calculated nontrivial Z2 topological invariant. The TI characteristics are intrinsic to the studied materials and are not subject to lateral quantum confinement at edges, as confirmed by explicit simulation of the corresponding nanoribbons. It is worthwhile to point out that the large nontrivial bulk gaps of 0.934 eV (Me-Bi), 0.386 eV (Me-Sb), and 0.964 eV (Me-Pb) are derived from the strong spin-orbit coupling within the p(x) and p(y) orbitals and would be large enough for room-temperature application. Moreover, we show that the topological properties in these three systems are robust against mechanical deformation. These novel 2D TIs with such giant topological energy gaps are promising platforms for topological phenomena and possible applications at high temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.