Mapping the ecological networks of microbial communities is a necessary step toward understanding their assembly rules and predicting their temporal behavior. However, existing methods require assuming a particular population dynamics model, which is not known a priori. Moreover, those methods require fitting longitudinal abundance data, which are often not informative enough for reliable inference. To overcome these limitations, here we develop a new method based on steady-state abundance data. Our method can infer the network topology and inter-taxa interaction types without assuming any particular population dynamics model. Additionally, when the population dynamics is assumed to follow the classic Generalized Lotka–Volterra model, our method can infer the inter-taxa interaction strengths and intrinsic growth rates. We systematically validate our method using simulated data, and then apply it to four experimental data sets. Our method represents a key step towards reliable modeling of complex, real-world microbial communities, such as the human gut microbiota.
Microbes form complex and dynamic ecosystems that play key roles in the health of the animals and plants with which they are associated. Such ecosystems are often represented by a directed, signed and weighted ecological network, where nodes represent microbial taxa and edges represent ecological interactions. Inferring the underlying ecological networks of microbial communities is a necessary step towards understanding their assembly rules and predicting their dynamical response to external stimuli. However, current methods for inferring such networks require assuming a particular population dynamics model, which is typically not known a priori. Moreover, those methods require fitting longitudinal abundance data, which is not readily available, and often does not contain the variation that is necessary for reliable inference. To overcome these limitations, here we develop a new method to map the ecological networks of microbial communities using steady-state data. Our method can qualitatively infer the inter-taxa interaction types or signs (positive, negative or neutral) not peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission.The copyright holder for this preprint (which was . http://dx.doi.org/10.1101/150649 doi: bioRxiv preprint first posted online Jun. 15, 2017; 2 without assuming any particular population dynamics model. Additionally, when the population dynamics is assumed to follow the classic Generalized Lotka-Volterra model, our method can quantitatively infer the inter-taxa interaction strengths and intrinsic growth rates. We systematically validate our method using simulated data, and then apply it to four experimental datasets of microbial communities. Our method offers a novel framework to infer microbial interactions and reconstruct ecological networks, and represents a key step towards reliable modeling of complex, real-world microbial communities, such as the human gut microbiota.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.